Bài 1 trang 100 SBT Hình học 10 Nâng cao


Giải bài tập Bài 1 trang 100 SBT Hình học 10 Nâng cao

Đề bài

Viết phương trình các đường cao của tam giác \(ABC\) biết \(A(-1 ; 2), B(2; -4), C(1 ; 0).\)

Lời giải chi tiết

Ta có  \(\overrightarrow {AB}  = (3 ;  - 6);\) \(  \overrightarrow {BC}  = ( - 1 ; 4) ;\) \( \overrightarrow {AC}  = (2 ;  - 2)\).

Gọi \(H\) là trực tâm của tam giác \(ABC\) thì đường cao \(AH\) qua \(A\) nhận \(\overrightarrow {BC} \) làm vec tơ pháp tuyến nên có phương trình :

\( - 1(x + 1) + 4(y - 2) = 0\) hay \(x - 4y + 9 = 0\).

Đường cao \(BH\) qua \(B\) và nhận \(\overrightarrow {AC} \) làm vec tơ pháp tuyến nên có phương trình:

\(2(x - 2) - 2(y + 4) = 0\) hay \(x - y - 6 = 0\).

Đường cao \(CH\) qua \(C\) và nhận \(\overrightarrow {AB} \) làm vec tơ pháp tuyến nên có phương trình :

\(3(x - 1) - 6(y - 0) = 0\) hay \(x - 2y - 1 = 0\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí