Bài 12 trang 124 SGK Hình học 12 Nâng cao>
Cho hình hộp chữ nhật ABCD.A’B’C’D’ với AB = a, BC = b, CC’ = c. a) Tính khoảng cách từ điểm A tới mp(A’BD). b) Tính khoảng cách từ điểm A’ tới đường thẳng C’D. c) Tính khoảng cách giữa hai đường thẳng BC’ và CD’.
Cho hình hộp chữ nhật ABCD.A’B’C’D’ với AB = a, BC = b, CC’ = c.
LG a
Tính khoảng cách từ điểm A tới mp(A’BD).
Lời giải chi tiết:
Chọn hệ trục tọa độ Oxyz như hình vẽ.
Ta có: \(A'\left( {0;0;c} \right),\,\,B\left( {a;0;0} \right),\,\,D\left( {0;b;0} \right).\)
Phương trình mặt phẳng (A’BD) là: \({x \over a} + {y \over b} + {z \over c} - 1 = 0.\)
Khoảng cách từ A(0; 0; 0) tới mp(A’BD) là:
\(d = {{\left| { - 1} \right|} \over {\sqrt {{1 \over {{a^2}}} + {1 \over {{b^2}}} + {1 \over {{c^2}}}} }} = {{abc} \over {\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}.\)
LG b
Tính khoảng cách từ điểm A’ tới đường thẳng C’D.
Lời giải chi tiết:
Ta có \(C'\left( {a;b;c} \right).\)
\(\eqalign{
& \overrightarrow {A'C'} = \left( {a,b,0} \right),\overrightarrow {C'D} = \left( { - a;0; - c} \right) \cr
& \left[ {\overrightarrow {A'C'} ,\overrightarrow {C'D} } \right] = \left( { - bc,ac,ab} \right). \cr} \)
Khoảng cách từ \(A'\left( {0,0,c} \right)\) tới đường thẳng C’D là:
\({h_1} = {{\left| {\left[ {\overrightarrow {A'C'} ,\overrightarrow {C'D} } \right]} \right|} \over {\left| {\overrightarrow {C'D} } \right|}} = {{\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} } \over {\sqrt {{a^2} + {c^2}} }}.\)
LG c
Tính khoảng cách giữa hai đường thẳng BC’ và CD’.
Lời giải chi tiết:
Ta có \(\overrightarrow {BC'} = \left( {0,b,c} \right),\overrightarrow {CD'} = \left( { - a,0,c} \right),\) \(\overrightarrow {BC} = \left( {0,b,0} \right).\)
Khoảng cách giữa BC’ và CD’ là:
\({h_2} = {{\left| {\left[ {\overrightarrow {BC'} ,\overrightarrow {CD'} } \right].\overrightarrow {BC} } \right|} \over {\left| {\left[ {\overrightarrow {BC'} ,\overrightarrow {CD'} } \right]} \right|}} = {{abc} \over {\sqrt {{a^2}{b^2} + {b^2}{c^2} + {c^2}{a^2}} }}.\)
Loigiaihay.com
- Bài 11 trang 124 SGK Hình học 12 Nâng cao
- Bài 10 trang 124 SGK Hình học 12 Nâng cao
- Bài 9 trang 123 SGK Hình học 12 Nâng cao
- Bài 8 trang 123 SGK Hình học 12 Nâng cao
- Bài 7 trang 123 SGK Hình học 12 Nâng cao
>> Xem thêm