Trắc nghiệm Tổng hợp bài tập chuyển động của điện tích trong điện trường - Vật Lí 11
Đề bài
Thả một ion dương cho chuyển động không vận tốc đầu từ một điểm bất kì trong một điện trường do hai điện tích điểm dương gây ra. Ion đó sẽ chuyển động
-
A.
dọc theo một đường sức điện.
-
B.
dọc theo một đường nối hai điện tích điểm.
-
C.
từ điểm có điện thế cao đến điểm có điện thế thấp.
-
D.
từ điểm có điện thế thấp đến điểm có điện thế cao.
Nối hai cực của nguồn điện không đổi có hiệu điện thế $50V$ lên hai bản của tụ điện phẳng có khoảng cách giữa hai bản tụ bằng $5cm$. Trong vùng không gian giữa hai bản tụ, $1$ proton có điện tích \(1,{6.10^{ - 19}}C\) và khối lượng \(1,{67.10^{ - 27}}kg\) chuyển động từ điểm M cách bản âm của tụ điện $4cm$ đến điểm N cách bản âm của tụ $1cm$. Biết tốc độ của proton tại M bằng \({10^5}m/s\). Tốc độ của proton tại N bằng:
-
A.
\(1,{25.10^5}m/s\)
-
B.
\(3,{57.10^5}m/s\)
-
C.
\(1,{73.10^5}m/s\)
-
D.
\(1,{57.10^6}m/s\)
Hiệu điện thế giữa hai bản tụ điện phẳng bằng \(U = 300{\rm{ }}V\). Một hạt bụi nằm cân bằng giữa hai bản tụ điện và cách bản dưới của tụ điện \({d_1} = 0,8cm\). Hỏi trong bao nhiêu lâu hạt bụi sẽ rơi xuống mặt bản tụ, nếu hiệu điện thế giữa hai bản giảm đi một lượng \(\Delta U = 60{\rm{ }}V\).
-
A.
\(t = 0,9{\rm{ }}s\)
-
B.
\(t = 0,19{\rm{ }}s\)
-
C.
\(t = 0,09s\)
-
D.
\(t = 0,29s\)
Một quả cầu tích điện có khối lượng 0,1g nằm cân bằng giữa hai bản tụ điện phẳng, đứng cạnh nhau d =1 cm. Khi hai bản tụ được nối với hiệu điện thế U =1000V thì dây treo quả cầu lệch khỏi phương thẳng đứng một góc α = 100. Điện tích của quả cầu bằng:
-
A.
\({q_0} = 1,{33.10^{ - 9}}C\)
-
B.
\({q_0} = 1,{31.10^{ - 9}}C\)
-
C.
\({q_0} = 1,{13.10^{ - 9}}C\)
-
D.
\({q_0} = 1,{76.10^{ - 9}}C\)
Một electron bắt đầu bay vào điện trường đều \(E = 910V/m\) với vận tốc ban đầu \({v_0} = 3,{2.10^6}m/s\)cùng chiều đường sức của E. Biết \(e = - 1,{6.10^{ - 19}}C\), \(m = 9,{1.10^{ - 31}}kg\).
Gia tốc của electron trong điện trường đều có giá trị là:
-
A.
\(a = - 1,{6.10^{14}}\left( {m/{s^2}} \right)\)
-
B.
\(a = 1,{6.10^{14}}\left( {m/{s^2}} \right)\)
-
C.
\(a = {2.10^{14}}\left( {m/{s^2}} \right)\)
-
D.
\(a = - {2.10^{14}}\left( {m/{s^2}} \right)\)
Thời gian mà electron chuyển động cho đến khi dừng lại là:
-
A.
\({10^{ - 8}}s\)
-
B.
\(1,{2.10^{ - 8}}s\)
-
C.
\({2.10^{ - 8}}s\)
-
D.
\(2,{4.10^{ - 8}}s\)
Quãng đường mà electron đi được cho đến khi dừng lại là:
-
A.
\(s = 2,8cm\)
-
B.
\(s = 3,2cm\)
-
C.
\(s = 1,4m\)
-
D.
\(s = 1,6m\)
Dưới tác dụng của lực điện trường, hai hạt bụi mang điện tích trái dấu đi lại gặp nhau. Biết tỉ số giữa độ lớn điện tích và khối lượng của các hạt bụi lần lượt là \(\frac{{{q_1}}}{{{m_1}}} = \frac{1}{{50}}\left( {C/kg} \right);\frac{{{q_2}}}{{{m_2}}} = \frac{3}{{50}}\left( {C/kg} \right)\). Hai hạt bụi lúc đầu cách nhau $d = 5 cm$ với hiệu điện thế $U = 100V$. Hai hạt bụi bắt đầu chuyển động cùng lúc với vận tốc đầu bằng $0$. Coi trọng lực của hạt bụi quá nhỏ so với lực điện trường. Xác định thời gian để hạt bụi gặp nhau?
-
A.
\(t = 0,05{\rm{s}}\)
-
B.
\(t = 2,5{\rm{s}}\)
-
C.
\(t = 0,025{\rm{s}}\)
-
D.
\(t = 0,02{\rm{s}}\)
Một hạt bụi có khối lượng \(m = {10^{ - 7}}g\) mang điện tích âm, nằm lơ lửng trong điện trường đều tạo bởi hai bản tích điện trái dấu, đặt song song và nằm ngang. Khoảng cách giữa hai bản là \(d = 0,5cm\) và hiệu điện thế giữa hai bản là \(U = 31,25V\). Lấy \(g = 10m/{s^2}\)
Tính lượng electron thừa trong hạt bụi. Biết điện tích của electron \(e = - 1,{6.10^{ - 19}}C\)
-
A.
\(1,{6.10^9}\)
-
B.
\({10^9}\)
-
C.
\({10^6}\)
-
D.
\(1,{6.10^6}\)
Nếu hạt bụi mất đi một nửa số electron có thừa thì hạt bụi sẽ chuyển động như thế nào?
-
A.
chậm dần đều với gia tốc \(a = 15m/{s^2}\)
-
B.
nhanh dần đều với gia tốc \(a = 15m/{s^2}\)
-
C.
chậm dần đều với gia tốc \(a = 5m/{s^2}\)
-
D.
nhanh dần đều với gia tốc \(a = 5m/{s^2}\)
Một electron có động năng \({{\rm{W}}_d} = 200eV\) lúc bắt đầu đi vào điện trường đều của hai bản kim loại đặt song song tích điện trái dấu theo hướng đường sức. Hỏi hiệu điện thế giữa hai bản phải là bao nhiêu để hạt không đến được bản đối diện. Biết \(1eV = 1,{6.10^{ - 19}}J\)
-
A.
\(U > 200V\)
-
B.
\(U = 200V\)
-
C.
\(U < 200V\)
-
D.
\(U \ne 200V\)
Một electron bay vào khoảng không giữa hai bản kim loại tích điện trái dấu với vận tốc \({v_0} = 2,{5.10^7}m/s\) từ phía bản dương về phía bản âm theo hướng hợp với bản dương góc \({15^0}\). Độ dài của mỗi bản là \(L = 5cm\) và khoảng cách giữa hai bản là \(d = 1cm\). Hãy tính hiệu điện thế giữa hai bản, biết rằng khi ra khỏi điện trường vận tốc của electron có phương song song với hai bản.
-
A.
\(535,5V\)
-
B.
\(711,7V\)
-
C.
\(177,7V\)
-
D.
\(355,5V\)
Một hạt bụi có khối lượng \(m = {10^{ - 11}}\,\,g\) nằm trong khoảng hai tấm kim loại song song nằm ngang và nhiễm điện trái dấu. Khoảng cách giữa hai bản \(d = 0,5\,\,cm\). Chiếu ánh sáng tử ngoại vào hạt bụi, do mất một phần điện tích, hạt bụi sẽ mất cân bằng. Để thiết lập lại cân bằng, người ta phải tăng hiệu điện thế giữa hai bản lên một lượng \(\Delta U = 34\,\,V\). Biết rằng hiệu điện thế giữa hai bản lúc đầu bằng \(306,3\,\,V\). Lấy \(g = 10\,\,m/{s^2}\). Điện lượng đã mất đi là?
-
A.
\(1,{63.10^{ - 19}}\,\,C\)
-
B.
\(1,{63.10^{ - 16}}\,\,C\)
-
C.
\(3,{26.10^{ - 16}}\,\,C\)
-
D.
\(3,{26.10^{ - 19}}\,\,C\)
Một hạt bụi tích điện có khối lượng \(m = {5.10^{ - 6}}g\) nằm cân bằng trong điện trường đều có hướng thẳng đứng lên trên và có cường độ \(E = 2000V/m\), lấy \(g = 10m/{s^2}\). Điện tích của hạt bụi là:
-
A.
\( - 2,{5.10^{ - 11}}C\)
-
B.
\(2,{5.10^{ - 11}}C\)
-
C.
\({10^{ - 11}}C\)
-
D.
\( - {10^{ - 11}}C\)
Hai điện tích \({q_1} = 8\,\,\mu C\) và \({q_2} = - 2\,\,\mu C\) có cùng khối lượng và ban đầu chúng bay cùng hướng cùng vận tốc vào một từ trường đều. Điện tích \({q_1}\) chuyển động cùng chiều kim đồng hồ với bán kính quỹ đạo \(4\,\,cm\). Điện tích \({q_2}\) chuyển động
-
A.
cùng chiều kim đồng hồ với bán kính \(16\,\,cm\)
-
B.
ngược chiều kim đồng hồ với bán kính \(16\,\,cm\)
-
C.
ngược chiều kim đồng hồ với bán kính \(8\,\,cm\)
-
D.
cùng chiều kim đồng hồ với bán kính \(8\,\,cm\).
Một hạt proton chuyển động ngược chiều đường sức điện trường đều với tốc độ ban đầu 4.105 m/s. Cho cường độ điện trường đều có độ lớn E = 3000 V/m, e = 1,6.10 – 19 C, mp = 1,67.10 – 27 kg. Bỏ qua tác dụng của trọng lực lên proton. Sau khi đi được đoạn đường 3 cm, tốc độ của proton là
-
A.
3,98.105 m/s
-
B.
5,64.105 m/s
-
C.
3,78.105 m/s
-
D.
4,21.105 m/s
Một electron bay trong điện trường giữa hai bản kim loại đặt song song, đã tích điện và cách nhau 2 cm, với vận tốc 3.107 m/s theo phương song song với các bản. Khi electron đi được đoạn đường 5cm, nó bị lệch đi 2,5mm theo phương của đường sức điện trong điện trường. Coi điện trường giữa hai bản là điện trường đều. Bỏ qua tác dụng của trọng lực của electron. Hiệu điện thế giữa hai bản gần giá trị nào sau đây nhất?
-
A.
400V
-
B.
150V
-
C.
300V
-
D.
200V
Hai tấm kim loại phẳng, tích điện trái dấu, đặt song song, nằm ngang trong chân không. Một điện tích dương có vận tốc đầu bằng 0 di chuyển từ tấm này sang tấm kia như hình vẽ. Đồ thị nào dưới đây biểu diễn mối liên hệ giữa động năng Ek của hạt theo quãng đường đi được x từ bản dương?
-
A.
-
B.
-
C.
-
D.
Một electron bay trong điện trường giữa hai bản kim loại đặt song song, đã tích điện và cách nhau \(2\,\,cm\), với vận tốc \({3.10^7}\,\,m/s\) theo phương song song với các bản. Khi electron đi được đoạn đường \(5\,\,cm\), nó bị lệch đi \(2,5\,\,mm\) theo phương của đường sức điện trong điện trường? Coi điện trường giữa hai bản là điện trường đều. Bỏ qua tác dụng của trọng lực của electron. Hiệu điện thế giữa hai bản gần giá trị nào sau đây nhất?
-
A.
\(200\,\,V\)
-
B.
\(150\,\,V\)
-
C.
\(300\,\,V\)
-
D.
\(400\,\,V\)
Một electron được thả không vận tốc ban đầu ở sát bản âm trong điện trường đều giữa hai bản kim loại phẳng tích điện trái dấu. Cường độ điện trường giữa hai bản là 100 V/m. Khoảng cách giữa hai bản là 1cm. Động năng của electron khi nó đến đập vào bản dương là
-
A.
\(1,{6.10^{ - 17}}J.\)
-
B.
\(1,{6.10^{ - 19}}{\mkern 1mu} J\)
-
C.
\(1,{6.10^{ - 20}}{\mkern 1mu} J\)
-
D.
\(1,{6.10^{ - 18}}{\mkern 1mu} J\)
Lời giải và đáp án
Thả một ion dương cho chuyển động không vận tốc đầu từ một điểm bất kì trong một điện trường do hai điện tích điểm dương gây ra. Ion đó sẽ chuyển động
-
A.
dọc theo một đường sức điện.
-
B.
dọc theo một đường nối hai điện tích điểm.
-
C.
từ điểm có điện thế cao đến điểm có điện thế thấp.
-
D.
từ điểm có điện thế thấp đến điểm có điện thế cao.
Đáp án : C
Cường độ điện trường hướng từ nơi có điện thế cao đến nơi có điện thế thấp. Ion dương nên lực điện cùng chiều với cường độ điện trường.
=> Ion dương sẽ chuyển động từ điểm có điện thế cao đến điểm có điện thế thấp.
Nối hai cực của nguồn điện không đổi có hiệu điện thế $50V$ lên hai bản của tụ điện phẳng có khoảng cách giữa hai bản tụ bằng $5cm$. Trong vùng không gian giữa hai bản tụ, $1$ proton có điện tích \(1,{6.10^{ - 19}}C\) và khối lượng \(1,{67.10^{ - 27}}kg\) chuyển động từ điểm M cách bản âm của tụ điện $4cm$ đến điểm N cách bản âm của tụ $1cm$. Biết tốc độ của proton tại M bằng \({10^5}m/s\). Tốc độ của proton tại N bằng:
-
A.
\(1,{25.10^5}m/s\)
-
B.
\(3,{57.10^5}m/s\)
-
C.
\(1,{73.10^5}m/s\)
-
D.
\(1,{57.10^6}m/s\)
Đáp án : A
+ Vận dụng biểu thức tính cường độ điện trường: \(E = \dfrac{U}{d}\)
+ Vận dụng biểu thức tính lực điện: \(F = qE\)
+ Áp dụng biểu thức định luật II - Newton: \(F = ma\)
+ Vận dụng biểu thức: \({v^2} - v_0^2 = 2{\rm{a}}s\)
Ta có:
+ Cường độ điện trường giữa hai bản tụ điện là:
\(E = \dfrac{U}{d} = \dfrac{{50}}{{0,05}} = 1000V/m\).
+ Lực điện trường tác dụng lên điện tích là \(F = qE = 1,{6.10^{ - 19}}.1000 = 1,{6.10^{ - 16}}N\).
+ Định luật II Niuton có \(F = ma\)
=> điện tích di chuyển trong điện trường với gia tốc \(a = \dfrac{F}{m} = \dfrac{{1,{{6.10}^{ - 16}}}}{{1,{{67.10}^{ - 27}}}} = 9,{58.10^{10}}m/{s^2}\)
\( \to v_N^2 - v_M^2 = 2as \Rightarrow {v_N} = \sqrt {2.9,{{58.10}^{10}}.0,03 + {{\left( {{{10}^5}} \right)}^2}} = 1,{25.10^5}m/s\).
Hiệu điện thế giữa hai bản tụ điện phẳng bằng \(U = 300{\rm{ }}V\). Một hạt bụi nằm cân bằng giữa hai bản tụ điện và cách bản dưới của tụ điện \({d_1} = 0,8cm\). Hỏi trong bao nhiêu lâu hạt bụi sẽ rơi xuống mặt bản tụ, nếu hiệu điện thế giữa hai bản giảm đi một lượng \(\Delta U = 60{\rm{ }}V\).
-
A.
\(t = 0,9{\rm{ }}s\)
-
B.
\(t = 0,19{\rm{ }}s\)
-
C.
\(t = 0,09s\)
-
D.
\(t = 0,29s\)
Đáp án : C
+ Vận dụng điều kiện cân bằng của vật: Tổng tất cả các lực tác dụng lên vật bằng 0
+ Vận dụng biểu thức xác định lực điện: \(F = \frac{{qU}}{d}\)
+ Vận dụng biểu thức định luật II - Newton: \(F = ma\)
+ Sử dụng phương trình chuyển động: \(y = \frac{1}{2}a{t^2}\)
Hạt bụi nằm cân bằng chịu tác dụng của trọng lực P và lực điện F: \(P = F\)
- Trước khi giảm U: \(P = mg.q.E = q.\frac{U}{d} \to m = \frac{{qU}}{{dg}}\)
- Sau khi giảm U: \({F_1} = \frac{{q\left( {U - \Delta U} \right)}}{d}\)
Hiệu lực \(F - {F_1}\) gây ra gia tốc cho hạt bụi:
\(F - {F_1} = \frac{{q.\Delta U}}{d} = m.a\)
\( \Rightarrow a = \frac{{\Delta U.g}}{U}\)
Ta có: \({d_1} = \frac{{a{t^2}}}{2} \to t = \sqrt {\frac{{2{d_1}}}{a}} = \sqrt {\frac{{2{d_1}U}}{{\Delta U.g}}} = 0,09s\)
Một quả cầu tích điện có khối lượng 0,1g nằm cân bằng giữa hai bản tụ điện phẳng, đứng cạnh nhau d =1 cm. Khi hai bản tụ được nối với hiệu điện thế U =1000V thì dây treo quả cầu lệch khỏi phương thẳng đứng một góc α = 100. Điện tích của quả cầu bằng:
-
A.
\({q_0} = 1,{33.10^{ - 9}}C\)
-
B.
\({q_0} = 1,{31.10^{ - 9}}C\)
-
C.
\({q_0} = 1,{13.10^{ - 9}}C\)
-
D.
\({q_0} = 1,{76.10^{ - 9}}C\)
Đáp án : D
+ Xác định các lực tác dụng lên quả cầu
+ Vận dụng điều kiện cân bằng của vật: \(\sum {\overrightarrow F } = \overrightarrow 0 \)
+ Vận dụng biểu thức tính lực điện: \(F = qE = q\frac{U}{d}\)
+ Các lực tác dụng lên quả cầu \(\overrightarrow P ,\overrightarrow F ,\overrightarrow T \):
+ Quả cầu cân bằng => \(\overrightarrow P + \overrightarrow F + \overrightarrow T = \overrightarrow 0 \)
+ Ta có: \(F = P\tan \alpha = {q_0}.E = {q_0}.\frac{U}{d}\)
\( \Rightarrow {q_0} = \frac{{mgd\tan \alpha }}{U} = \frac{{0,{{1.10}^{ - 3}}.0,01.10.\tan 10^\circ }}{{1000}} = 1,{76.10^{ - 9}}C\)
Một electron bắt đầu bay vào điện trường đều \(E = 910V/m\) với vận tốc ban đầu \({v_0} = 3,{2.10^6}m/s\)cùng chiều đường sức của E. Biết \(e = - 1,{6.10^{ - 19}}C\), \(m = 9,{1.10^{ - 31}}kg\).
Gia tốc của electron trong điện trường đều có giá trị là:
-
A.
\(a = - 1,{6.10^{14}}\left( {m/{s^2}} \right)\)
-
B.
\(a = 1,{6.10^{14}}\left( {m/{s^2}} \right)\)
-
C.
\(a = {2.10^{14}}\left( {m/{s^2}} \right)\)
-
D.
\(a = - {2.10^{14}}\left( {m/{s^2}} \right)\)
Đáp án: A
+ Áp dụng định luật II - Newtơn: \(\overrightarrow F = m\overrightarrow a \)
+ Xác định, chiếu các lực lên phương chuyển động
+ Vận dụng biểu thức tính lực điện: \(F = \left| q \right|E\)
Chọn trục Ox, có gốc O là vị trí mà electon bắt đầu bay vào điện trường, chiều dương trùng với chiều chuyển động.
Khi bay trong điện trường, electron chịu tác dụng của lực điện \(\overrightarrow F \)
+ Theo định luật II - Niutơn, ta có: \(\overrightarrow F = m\overrightarrow a \) (1)
+ Vì \(q = e < 0 \to \overrightarrow F \uparrow \downarrow \overrightarrow E \), mà \(\overrightarrow {{v_0}} \) cùng hướng với \(\overrightarrow E \) nên \(\overrightarrow F \) ngược chiều dương.
Chiếu (1) lên Ox, ta được:
\(\begin{array}{l} - F = ma \leftrightarrow - \left| q \right|E = ma\\ \to a = \frac{{ - \left| { - 1,{{6.10}^{ - 19}}} \right|910}}{{9,{{1.10}^{ - 31}}}} = - 1,{6.10^{14}}\left( {m/{s^2}} \right)\end{array}\)
=> electron chuyển động chậm dần với gia tốc: \(a = - 1,{6.10^{14}}\left( {m/{s^2}} \right)\)
Thời gian mà electron chuyển động cho đến khi dừng lại là:
-
A.
\({10^{ - 8}}s\)
-
B.
\(1,{2.10^{ - 8}}s\)
-
C.
\({2.10^{ - 8}}s\)
-
D.
\(2,{4.10^{ - 8}}s\)
Đáp án: C
+ Sử dụng gia tốc a tính được ở câu trên
+ Vận dụng phương trình vận tốc: \(v = {v_0} + at\)
+ electron dừng lại khi vận tốc bằng 0
Ta có:
Gia tốc chuyển động của electron khi chuyển động trong điện trường: \(a = - 1,{6.10^{14}}\left( {m/{s^2}} \right)\) (tính ở câu trên)
+ Phương trình vận tốc: \(v = {v_0} + at\)
+ Electron dừng lại: \(v = 0 = {v_0} + at \to t = \frac{{ - {v_0}}}{a} = \frac{{3,{{2.10}^6}}}{{1,{{6.10}^{14}}}} = {2.10^{ - 8}}s\)
Quãng đường mà electron đi được cho đến khi dừng lại là:
-
A.
\(s = 2,8cm\)
-
B.
\(s = 3,2cm\)
-
C.
\(s = 1,4m\)
-
D.
\(s = 1,6m\)
Đáp án: B
+ Sử dụng gia tốc a tính được ở câu trên
+ Vận dụng hệ thức độc lập: \({v^2} - v_0^2 = 2a{\rm{s}}\)
+ electron dừng lại khi vận tốc bằng 0
Ta có:
+ Gia tốc chuyển động của electron khi chuyển động trong điện trường: \(a = - 1,{6.10^{14}}\left( {m/{s^2}} \right)\) (tính ở câu trên)
+ Lại có: \({v^2} - v_0^2 = 2a{\rm{s}}\)
+ Electron dừng lại: v = 0
Ta suy ra: \(s = \frac{{0 - v_0^2}}{{2{\rm{a}}}} = \frac{{0 - {{\left( {3,{{2.10}^6}} \right)}^2}}}{{2.\left( { - 1,{{6.10}^{14}}} \right)}} = 0,032m = 3,2cm\)
Dưới tác dụng của lực điện trường, hai hạt bụi mang điện tích trái dấu đi lại gặp nhau. Biết tỉ số giữa độ lớn điện tích và khối lượng của các hạt bụi lần lượt là \(\frac{{{q_1}}}{{{m_1}}} = \frac{1}{{50}}\left( {C/kg} \right);\frac{{{q_2}}}{{{m_2}}} = \frac{3}{{50}}\left( {C/kg} \right)\). Hai hạt bụi lúc đầu cách nhau $d = 5 cm$ với hiệu điện thế $U = 100V$. Hai hạt bụi bắt đầu chuyển động cùng lúc với vận tốc đầu bằng $0$. Coi trọng lực của hạt bụi quá nhỏ so với lực điện trường. Xác định thời gian để hạt bụi gặp nhau?
-
A.
\(t = 0,05{\rm{s}}\)
-
B.
\(t = 2,5{\rm{s}}\)
-
C.
\(t = 0,025{\rm{s}}\)
-
D.
\(t = 0,02{\rm{s}}\)
Đáp án : C
+ Chọn chiều dương, xác định chuyển động của mỗi hạt
+ Vận dụng biểu thức định luật II - Newtơn: \(F = ma\)
+ Chiếu các lực lên chiều dương đã chọn
+ Vận dụng biểu thức tính lực điện: \(F = qE = q\dfrac{U}{d}\)
+ Viết phương trình chuyển động của mỗi vật: \(s = \dfrac{1}{2}a{t^2}\)
Chọn chiều dương là chiều của véctơ \(\overrightarrow E \)
Giả sử \({q_1} > 0;{q_2} < 0\), khi đó hạt mang điện tích \({q_1}\) sẽ chuyển động theo chiều điện trường, hạt mang điện tích $q_2$ sẽ chuyển động ngược chiều điện trường.
+ Biểu thức định luật II - Niutơn cho mỗi hạt: \(\left\{ \begin{array}{l}\overrightarrow {{F_1}} = {m_1}\overrightarrow {{a_1}} \\\overrightarrow {{F_2}} = {m_2}\overrightarrow {{a_2}} \end{array} \right.\)
+ Chiếu lên chiều dương đã chọn, ta có: \(\left\{ \begin{array}{l}{F_1} = {m_1}{a_1}\\ - {F_2} = {m_2}{a_2}\end{array} \right.\)
.\( \to \left\{ \begin{array}{l}{a_1} = \dfrac{{{F_1}}}{{{m_1}}} = \dfrac{{\left| q \right|E}}{{{m_1}}} = \dfrac{{\left| q \right|U}}{{{m_1}d}} = \dfrac{1}{{50}}.\dfrac{{100}}{{0,05}} = 40\left( {m/{s^2}} \right)\\{a_2} = \dfrac{{ - {F_2}}}{{{m_2}}} = \dfrac{{ - \left| q \right|E}}{{{m_2}}} = \dfrac{{ - \left| q \right|U}}{{{m_2}d}} = - \dfrac{3}{{50}}.\dfrac{{100}}{{0,05}} = - 120\left( {m/{s^2}} \right)\end{array} \right.\).
+ Quãng đường đi được của mỗi hạt khi đến gặp nhau: \(\left\{ \begin{array}{l}{s_1} = \dfrac{1}{2}{a_1}{t^2} = 20{t^2}\\{s_2} = \dfrac{1}{2}\left| {{a_2}} \right|{t^2} = 60{t^2}\end{array} \right.\)
+ Khi hai vật gặp nhau thì:
\(\begin{array}{l}d = {s_1} + {s_2} \leftrightarrow 20{t^2} + 60{t^2} = 0,05\\ \to t = 0,025{\rm{s}}\end{array}\)
Một hạt bụi có khối lượng \(m = {10^{ - 7}}g\) mang điện tích âm, nằm lơ lửng trong điện trường đều tạo bởi hai bản tích điện trái dấu, đặt song song và nằm ngang. Khoảng cách giữa hai bản là \(d = 0,5cm\) và hiệu điện thế giữa hai bản là \(U = 31,25V\). Lấy \(g = 10m/{s^2}\)
Tính lượng electron thừa trong hạt bụi. Biết điện tích của electron \(e = - 1,{6.10^{ - 19}}C\)
-
A.
\(1,{6.10^9}\)
-
B.
\({10^9}\)
-
C.
\({10^6}\)
-
D.
\(1,{6.10^6}\)
Đáp án: C
+ Xác định các lực tác dụng lên hạt bụi
+ Sử dụng điều kiện cân bằng của vật, tổng hợp lực tác dụng lên vật bằng 0
+ Sử dụng biểu thức tính lực điện: \(F = qE\)
+ Sử dụng biểu thức tính trọng lượng: \(P = mg\)
+ Lượng electron thừa: \(n = \dfrac{q}{{\left| e \right|}}\)
+ Ta có, các lực tác dụng lên hạt bụi gồm lực điện và trọng lực
Hạt bụi nằm lơ lửng (tức là cân bằng) ta có các lực tác dụng lên hạt bụi: \(\overrightarrow {{F_d}} + \overrightarrow P = \overrightarrow 0 \)
Hay \({F_d} = P \Leftrightarrow qE = mg\)
\( \Rightarrow q = \dfrac{{mgd}}{U}\)
Ta suy ra, số hạt electron thừa trong hạt bụi là: \(n = \dfrac{q}{{\left| e \right|}} = \dfrac{{mgd}}{{U\left| e \right|}} = \dfrac{{{{10}^{ - 7}}{{.10}^{ - 3}}.10.\left( {0,{{5.10}^{ - 2}}} \right)}}{{31,25.1,{{6.10}^{ - 19}}}} = {10^6}\)
Nếu hạt bụi mất đi một nửa số electron có thừa thì hạt bụi sẽ chuyển động như thế nào?
-
A.
chậm dần đều với gia tốc \(a = 15m/{s^2}\)
-
B.
nhanh dần đều với gia tốc \(a = 15m/{s^2}\)
-
C.
chậm dần đều với gia tốc \(a = 5m/{s^2}\)
-
D.
nhanh dần đều với gia tốc \(a = 5m/{s^2}\)
Đáp án: D
+ Xác định các lực tác dụng lên hạt bụi
+ Sử dụng biểu thức định luật II – Newton
+ Sử dụng biểu thức tính lực điện: F = qE
+ Sử dụng biểu thức tính trọng lượng: P = mg
+ Biểu thức định luật II Niu-tơn: \(\overrightarrow F + \overrightarrow P = m\overrightarrow a \) (1)
Chọn chiều dương là chiều chuyển động của vật, ta có (1) tương đương với \(P - F = ma\)
+ Khi mất bớt đi một nửa điện tích thì F giảm đi một nửa nên \(P > F\)
\( \Rightarrow \) hạt sẽ chuyển động đi xuống nhanh nhần đều với gia tốc \(a = \dfrac{{P - F}}{m}\)
\(a = \dfrac{{mg - \dfrac{q}{2}E}}{m} = \dfrac{{mg - \dfrac{{mg}}{2}}}{m} = \dfrac{g}{2} = 5m/{s^2}\)
Vậy, nếu hạt bụi mất đi một nửa số electron có thừa thì hạt bụi sẽ chuyển động nhanh dần đều đi xuống với gia tốc \(a = 5m/{s^2}\)
Một electron có động năng \({{\rm{W}}_d} = 200eV\) lúc bắt đầu đi vào điện trường đều của hai bản kim loại đặt song song tích điện trái dấu theo hướng đường sức. Hỏi hiệu điện thế giữa hai bản phải là bao nhiêu để hạt không đến được bản đối diện. Biết \(1eV = 1,{6.10^{ - 19}}J\)
-
A.
\(U > 200V\)
-
B.
\(U = 200V\)
-
C.
\(U < 200V\)
-
D.
\(U \ne 200V\)
Đáp án : A
+ Sử dụng định lí biến thiên động năng: \({{\rm{W}}_{{d_2}}} - {{\rm{W}}_{{d_1}}} = {A_{ngoailuc}}\)
+ Sử dụng biểu thức liên hệ giữa cường độ điện trường và hiệu điện thế: \(E = \dfrac{U}{d}\)
Khi electron chuyển động từ bản này đến bản kia, thì nó chịu tác dụng của ngoại lực là lực điện trường.
+ Theo định lí động năng, ta có: \({{\rm{W}}_{{d_2}}} - {{\rm{W}}_{{d_1}}} = qE{d_{12}}\)
\( \Rightarrow {d_{12}} = \dfrac{{ - {{\rm{W}}_{{d_1}}}}}{{qE}} = \dfrac{{ - 200.1,{{6.10}^{ - 19}}}}{{ - 1,{{6.10}^{ - 19}}.E}} = \dfrac{{200}}{E}\)
+ Để electron không đến được bản đối diện thì quãng đường nó đi được phải nhỏ hơn khoảng cách giữa hai bản này hay \({d_{12}} < d\) (1)
Lại có: \(d = \dfrac{U}{E}\) (2)
Từ (1) và (2) ta suy ra: \(\dfrac{{200}}{E} < \dfrac{U}{E} \Rightarrow U > 200V\)
Một electron bay vào khoảng không giữa hai bản kim loại tích điện trái dấu với vận tốc \({v_0} = 2,{5.10^7}m/s\) từ phía bản dương về phía bản âm theo hướng hợp với bản dương góc \({15^0}\). Độ dài của mỗi bản là \(L = 5cm\) và khoảng cách giữa hai bản là \(d = 1cm\). Hãy tính hiệu điện thế giữa hai bản, biết rằng khi ra khỏi điện trường vận tốc của electron có phương song song với hai bản.
-
A.
\(535,5V\)
-
B.
\(711,7V\)
-
C.
\(177,7V\)
-
D.
\(355,5V\)
Đáp án : C
+ Vận dụng các biểu thức của dạng bài toán ném xiên
+ Sử dụng biểu thức tính lực điện: \(\overrightarrow F = q\overrightarrow E \)
+ Sử dụng biểu thức liên hệ giữa hiệu điện thế và cường độ điện trường: \(E = \dfrac{U}{d}\)
+ Sử dụng công thức lượng giác: \(\sin 2\alpha = 2\sin \alpha c{\rm{os}}\alpha \)
+ Chọn hệ trục \(xOy\) như hình
+ Ta có, chuyển động của hạt được phân tích thành hai chuyển động.
- Theo phương ngang (Ox): hạt chuyển động thẳng đều với vận tốc ban đầu \({v_{0x}} = {v_0}cos\alpha \)
- Theo phương Oy: hạt chuyển động biến đổi đều với vận tốc đầu: \({v_{0y}} = {v_0}\sin \alpha \)
+ Phương trình vận tốc theo các trục: \(\left\{ \begin{array}{l}{v_x} = {v_0}cos\alpha \\{v_y} = {v_0}\sin \alpha + at\end{array} \right.\)
+ Vì khi ra khỏi điện trường, vận tốc có phương ngang nên thành phần \({v_y} = 0\) do đó ta có:
\({v_0}\sin \alpha + at = 0 \Rightarrow t = \dfrac{{ - {v_0}\sin \alpha }}{a}\) (1)
+ Phương trình chuyển động theo phương Ox: \(x = \left( {{v_0}cos\alpha } \right)t\)
Khi ra khỏi điện trường thì \(x = L \Leftrightarrow \left( {{v_0}cos\alpha } \right)t = L\) (2)
Từ (1) và (2), ta có: \(\left( {{v_0}cos\alpha } \right)\dfrac{{ - {v_0}\sin \alpha }}{a} = L\) (3)
+ Mặt khác, ta có gia tốc của electron khi chuyển động trong điện trường: \(a = \dfrac{{ - F}}{m} = \dfrac{{ - \left| q \right|E}}{m} = \dfrac{{ - \left| q \right|U}}{{md}}\) (4)
Từ (3) và (4), ta có:
\(\eqalign{
& \left( {{v_0}cos\alpha } \right){{ - {v_0}\sin \alpha } \over {{{ - \left| q \right|U} \over {md}}}} = L \cr
& \Rightarrow U = {{mdv_0^2.\sin 2\alpha } \over {2\left| q \right|L}} = {{\left( {9,{{1.10}^{ - 31}}} \right).\left( {0,01} \right).{{\left( {2,{{5.10}^7}} \right)}^2}.\sin {{30}^0}} \over 2.{1,{{6.10}^{ - 19}}.0,05}} = 177,7V \cr} \)
Một hạt bụi có khối lượng \(m = {10^{ - 11}}\,\,g\) nằm trong khoảng hai tấm kim loại song song nằm ngang và nhiễm điện trái dấu. Khoảng cách giữa hai bản \(d = 0,5\,\,cm\). Chiếu ánh sáng tử ngoại vào hạt bụi, do mất một phần điện tích, hạt bụi sẽ mất cân bằng. Để thiết lập lại cân bằng, người ta phải tăng hiệu điện thế giữa hai bản lên một lượng \(\Delta U = 34\,\,V\). Biết rằng hiệu điện thế giữa hai bản lúc đầu bằng \(306,3\,\,V\). Lấy \(g = 10\,\,m/{s^2}\). Điện lượng đã mất đi là?
-
A.
\(1,{63.10^{ - 19}}\,\,C\)
-
B.
\(1,{63.10^{ - 16}}\,\,C\)
-
C.
\(3,{26.10^{ - 16}}\,\,C\)
-
D.
\(3,{26.10^{ - 19}}\,\,C\)
Đáp án : A
Hạt bụi cân bằng khi các lực tác dụng lên nó cân bằng
Mối liên hệ giữa cường độ điện trường và hiệu điện thế U = E.d
Các lực tác dụng lên hạt bụi gồm: Trọng lực \(\overrightarrow P \) , lực điện \(\overrightarrow F \)
Điều kiện cân bằng của hạt bụi: \(\overrightarrow F + \overrightarrow P = 0 \to F = P \leftrightarrow qE = mg \to q = \frac{{mg}}{E}\)
Mặt khác: \(E = \frac{U}{d} \to q = \frac{{mg}}{{\frac{U}{d}}} = \frac{{mgd}}{U}\)
Áp dụng cho lúc đầu và lúc sau, ta có: \(\left\{ \begin{array}{l}{q_1} = \frac{{mg{\rm{d}}}}{U}\\{q_2} = \frac{{mg{\rm{d}}}}{{U + \Delta U}}\end{array} \right.\)
\( \to \Delta q = {q_1} - {q_2} = mg{\rm{d}}\left( {\frac{1}{U} - \frac{1}{{U + \Delta U}}} \right) = {10^{ - 11}}{\rm{.1}}{{\rm{0}}^{ - 3}}{\rm{.10}}{\rm{.0,005}}{\rm{.}}\left( {\frac{1}{{306,3}} - \frac{1}{{306,3 + 34}}} \right) = 1,{63.10^{ - 19}}C\)
Một hạt bụi tích điện có khối lượng \(m = {5.10^{ - 6}}g\) nằm cân bằng trong điện trường đều có hướng thẳng đứng lên trên và có cường độ \(E = 2000V/m\), lấy \(g = 10m/{s^2}\). Điện tích của hạt bụi là:
-
A.
\( - 2,{5.10^{ - 11}}C\)
-
B.
\(2,{5.10^{ - 11}}C\)
-
C.
\({10^{ - 11}}C\)
-
D.
\( - {10^{ - 11}}C\)
Đáp án : B
Lực điện: \(\overrightarrow {{F_d}} = q.\vec E\)
Nếu: \(\left\{ \begin{array}{l}q > 0 \Rightarrow \overrightarrow {{F_d}} \uparrow \uparrow \overrightarrow E \\q < 0 \Rightarrow \overrightarrow {{F_d}} \uparrow \downarrow \overrightarrow E \end{array} \right.\)
Lực tác dụng vào hạt bụi: \(\overrightarrow P ;\overrightarrow {{F_d}} \)
Hạt bụi cân bằng: \(\overrightarrow P + \overrightarrow {{F_d}} = 0 \Rightarrow \left\{ \begin{array}{l}\overrightarrow P \uparrow \downarrow \overrightarrow {{F_d}} \,\,\left( 1 \right)\\P = {F_d}\,\,\,\,\,\left( 2 \right)\end{array} \right.\)
Từ (1) \( \Rightarrow \overrightarrow {{F_d}} \) hướng lên và cùng chiều \(\overrightarrow E \)\( \Rightarrow q > 0\)
Giải (2) ta có:
\(mg = \left| q \right|E \Rightarrow \left| q \right| = \dfrac{{mg}}{E} = \dfrac{{{{5.10}^{ - 9}}.10}}{{2000}} = 2,{5.10^{ - 11}}C\)
\( \Rightarrow q = 2,{5.10^{ - 11}}C\)
Hai điện tích \({q_1} = 8\,\,\mu C\) và \({q_2} = - 2\,\,\mu C\) có cùng khối lượng và ban đầu chúng bay cùng hướng cùng vận tốc vào một từ trường đều. Điện tích \({q_1}\) chuyển động cùng chiều kim đồng hồ với bán kính quỹ đạo \(4\,\,cm\). Điện tích \({q_2}\) chuyển động
-
A.
cùng chiều kim đồng hồ với bán kính \(16\,\,cm\)
-
B.
ngược chiều kim đồng hồ với bán kính \(16\,\,cm\)
-
C.
ngược chiều kim đồng hồ với bán kính \(8\,\,cm\)
-
D.
cùng chiều kim đồng hồ với bán kính \(8\,\,cm\).
Đáp án : B
Bán kính quỹ đạo của điện tích trong từ trường: \(R = \dfrac{{mv}}{{\left| q \right|B}}\)
Hai điện tích trái dấu → chúng chuyển động ngược chiều
→ điện tích \({q_2}\) chuyển động ngược chiều kim đồng hồ
Bán kính quỹ đạo chuyển động của điện tích là: \(R = \dfrac{{mv}}{{\left| q \right|B}} \Rightarrow R \sim \dfrac{1}{{\left| q \right|}}\)
Ta có: \(\dfrac{{\left| {{q_1}} \right|}}{{\left| {{q_2}} \right|}} = 4 \Rightarrow \dfrac{{{R_1}}}{{{R_2}}} = \dfrac{1}{4} \Rightarrow {R_2} = 4{R_1} = 4.4 = 16\,\,\left( {cm} \right)\)
Một hạt proton chuyển động ngược chiều đường sức điện trường đều với tốc độ ban đầu 4.105 m/s. Cho cường độ điện trường đều có độ lớn E = 3000 V/m, e = 1,6.10 – 19 C, mp = 1,67.10 – 27 kg. Bỏ qua tác dụng của trọng lực lên proton. Sau khi đi được đoạn đường 3 cm, tốc độ của proton là
-
A.
3,98.105 m/s
-
B.
5,64.105 m/s
-
C.
3,78.105 m/s
-
D.
4,21.105 m/s
Đáp án : C
Ta có:
Gia tốc:
\(a = - \dfrac{{qE}}{m} = - \dfrac{{1,{{6.10}^{ - 19}}.3000}}{{1,{{67.10}^{ - 27}}}} = - 2,{87.10^{ - 11}}\) (dấu “-” do proton chuyển động ngược chiều \(\overrightarrow E \))
Áp dụng công thức độc lập với thời gian:
\({v^2} - v_0^2 = 2{\rm{a}}s \Leftrightarrow v = \sqrt {2.( - 2,{{87.10}^{11}}).0,03 + {{\left( {{{4.10}^5}} \right)}^2}} = 3,{78.10^5}m/s\)
Một electron bay trong điện trường giữa hai bản kim loại đặt song song, đã tích điện và cách nhau 2 cm, với vận tốc 3.107 m/s theo phương song song với các bản. Khi electron đi được đoạn đường 5cm, nó bị lệch đi 2,5mm theo phương của đường sức điện trong điện trường. Coi điện trường giữa hai bản là điện trường đều. Bỏ qua tác dụng của trọng lực của electron. Hiệu điện thế giữa hai bản gần giá trị nào sau đây nhất?
-
A.
400V
-
B.
150V
-
C.
300V
-
D.
200V
Đáp án : D
Khảo sát chuyển động của electron gồm 2 chuyển động:
+ Chuyển động vuông góc với đường sức là chuyển động thẳng đều => Phương trình chuyển động là: x = v.t
=> Thời gian đi đoạn đường 5cm là:
\(t = \dfrac{s}{v} = \dfrac{{0,05}}{{{{3.10}^7}}} = 1,{67.10^{ - 9}}s\)
+ Chuyển động dọc theo đường sức là chuyển động nhanh dần đều:
\(y = \dfrac{1}{2}a{t^2}\) với \(a = \dfrac{F}{m} = \dfrac{{qE}}{m} = \dfrac{{qU}}{{d.m}}\)
\(\begin{array}{l} \Rightarrow 0,0025 = 0,5.\dfrac{{1,{{6.10}^{ - 19}}.U}}{{0,02.9,{{1.10}^{ - 31}}}}.{\left( {1,{{67.10}^{ - 19}}} \right)^2}\\ \Rightarrow U \approx 204V\end{array}\)
Hai tấm kim loại phẳng, tích điện trái dấu, đặt song song, nằm ngang trong chân không. Một điện tích dương có vận tốc đầu bằng 0 di chuyển từ tấm này sang tấm kia như hình vẽ. Đồ thị nào dưới đây biểu diễn mối liên hệ giữa động năng Ek của hạt theo quãng đường đi được x từ bản dương?
-
A.
-
B.
-
C.
-
D.
Đáp án : D
Động năng: \({E_k} = \frac{{m{v^2}}}{2}\)
Công thức độc lập với thời gian của chuyển động biến đổi đều: \({v^2} - {v_0}^2 = 2as\)
Lực điện: \(F = \left| q \right|E = ma\)
Nhận xét: điện trường giữa hai tấm kim lại tích điện trái dấu là điện trường đều có cường độ E
Lực điện tác dụng lên điện tích là:
\(F = \left| q \right|E = ma \Rightarrow a = \frac{{\left| q \right|E}}{m}\)
Chuyển động của điện tích có phương trình là:
\({v^2} - {v_0}^2 = 2ax \Rightarrow {v^2} = 2ax = 2\frac{{\left| q \right|E}}{m}x\)
Động năng của hạt là:
\({E_k} = \frac{1}{2}m{v^2} = \frac{1}{2}.m.2\frac{{\left| q \right|E}}{m}x = \left| q \right|Ex\)
→ Đồ thị động năng Ek theo quãng đường x là đường thẳng đi qua gốc tọa độ
Một electron bay trong điện trường giữa hai bản kim loại đặt song song, đã tích điện và cách nhau \(2\,\,cm\), với vận tốc \({3.10^7}\,\,m/s\) theo phương song song với các bản. Khi electron đi được đoạn đường \(5\,\,cm\), nó bị lệch đi \(2,5\,\,mm\) theo phương của đường sức điện trong điện trường? Coi điện trường giữa hai bản là điện trường đều. Bỏ qua tác dụng của trọng lực của electron. Hiệu điện thế giữa hai bản gần giá trị nào sau đây nhất?
-
A.
\(200\,\,V\)
-
B.
\(150\,\,V\)
-
C.
\(300\,\,V\)
-
D.
\(400\,\,V\)
Đáp án : A
Sử dụng lý thuyết chuyển động ném ngang
Gia tốc của electron là: \(a = \dfrac{{{F_d}}}{m} = \dfrac{{e.E}}{m} = \dfrac{{e.U}}{{m.d}}\)
Gia tốc theo phương Ox là: \({a_x} = 0\)
Gia tốc theo phương Oy là: \({a_y} = \dfrac{{eU}}{{md}}\)
Vận tốc theo phương Ox và Oy là:
\(\left\{ \begin{array}{l}{v_x} = {v_0}\\{v_y} = {v_{0y}} + {a_y}.t = \dfrac{{eU}}{{md}}.t\end{array} \right.\)
Phương trình chuyển động của electron theo phương Ox và Oy là:
\(\left\{ \begin{array}{l}x = {x_0} + {v_{0x}}t + \dfrac{1}{2}{a_x}.{t^2} = {v_0}.t \Rightarrow t = \dfrac{x}{{{v_0}}}\\y = {y_0} + {v_{0y}}.t + \dfrac{1}{2}{a_y}{t^2} = \dfrac{1}{2}.\dfrac{{eU}}{{md}}{t^2} = \dfrac{{eU}}{{2md.{v_0}^2}}.{x^2}\end{array} \right.\)
Thay số ta có:
\(2,{5.10^{ - 3}} = \dfrac{{1,{{6.10}^{ - 19}}.U}}{{2.9,{{1.10}^{ - 31}}.0,02.{{\left( {{{3.10}^7}} \right)}^2}}}.0,{05^2} \Rightarrow U = 204,75\,\,\left( V \right)\)
Một electron được thả không vận tốc ban đầu ở sát bản âm trong điện trường đều giữa hai bản kim loại phẳng tích điện trái dấu. Cường độ điện trường giữa hai bản là 100 V/m. Khoảng cách giữa hai bản là 1cm. Động năng của electron khi nó đến đập vào bản dương là
-
A.
\(1,{6.10^{ - 17}}J.\)
-
B.
\(1,{6.10^{ - 19}}{\mkern 1mu} J\)
-
C.
\(1,{6.10^{ - 20}}{\mkern 1mu} J\)
-
D.
\(1,{6.10^{ - 18}}{\mkern 1mu} J\)
Đáp án : D
Áp dụng công thức định lí động năng: \({{\rm{W}}_d} - 0 = qEd\)
Điện trường giữa hai bản là điện trường đều E = 1000 V/m.
Lực điện trường F tác dụng lên electron (điện tích âm) có chiều ngược với chiều điện trường do đó electron di chuyển ngược chiều điện trường \( \Rightarrow \left( {\vec E;\vec s} \right) = {180^0}\)
Áp dụng định lý động năng cho sự di chuyển của êlectron:
\({{\rm{W}}_d} - 0 = qEd \Rightarrow {{\rm{W}}_d} = - 1,{6.10^{ - 19}}.1000.\left( { - {{1.10}^{ - 2}}} \right) = 1,{6.10^{ - 18}}{\mkern 1mu} {\mkern 1mu} \left( J \right)\)
Luyện tập và củng cố kiến thức Ôn tập chương 1 Vật Lí 11 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Tổng hợp bài tập về tụ điện Vật Lí 11 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6. Tụ điện Vật Lí 11 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Tổng hợp bài tập công của lực điện - Hiệu điện thế Vật Lí 11 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4. Công của lực điện - Hiệu điện thế Vật Lí 11 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3. Bài tập điện trường Vật Lí 11 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3. Điện trường Vật Lí 11 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Tổng hợp bài tập định luật Culông (phần 2) Vật Lí 11 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Tổng hợp bài tập định luật Culông (phần 1) Vật Lí 11 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2. Thuyết electron và định luật bảo toàn điện tích Vật Lí 11 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1. Điện tích - Định luật Culông Vật Lí 11 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết