Bài 8.8 trang 23 SBT Vật Lí 12


Giải bài 8.8 trang 23 sách bài tập vật lí 12. Hai mũi nhọn S1, S2 cách nhau 8 cm, gắn ở đầu một cần rung có tần số f=100 Hz, được đặt cho chạm nhẹ vào mặt một chất lỏng. Tốc độ truyền sóng trên mặt chất lỏng là v = 0,8 m/s.

Đề bài

Hai mũi nhọn \({S_1},{S_2}\)cách nhau \(8cm\), gắn ở đầu một cần rung có tần số \(f = 100Hz\), được đặt cho chạm nhẹ vào mặt một chất lỏng. Tốc độ truyền sóng trên mặt chất lỏng là \(v = 0,8m/s\).

a) Gõ nhẹ cần rung thì hai điểm \({S_1},{S_2}\)dao động theo phương thẳng đứng với phương trình dạng \(u = Acos2\pi ft\). Hãy viết phương trình dao động của điểm \({M_1}\)trên mặt chất lỏng cách đều \({S_1},{S_2}\) một khoảng \(d = 8cm\).

b) Dao động của cần rung được duy trì bằng một nam châm điện. Để được một hệ vân giao thoa ổn định trên mặt chất lỏng, phải tăng khoảng cách \({S_1}{S_2}\)một đoạn ít nhất bằng bao nhiêu? Với khoảng cách ấy thì giữa hai điểm \({S_1},{S_2}\)có bao nhiêu gợn sóng hình hypebol?

Phương pháp giải - Xem chi tiết

Sử dụng phương trình sóng tổng hợp tại điểm cách nguồn \({S_1}\)  đoạn \({d_1}\) và cách nguồn \({S_2}\)  đoạn\({d_2}\): \(u = 2A\cos \dfrac{{\pi ({d_2} - {d_1})}}{\lambda }cos(2\pi ft - \dfrac{{\pi ({d_2} + {d_1})}}{\lambda })\)

Lời giải chi tiết

Bước sóng \(\lambda  = \dfrac{v}{f} = \dfrac{{0,8}}{{100}} = 0,008m = 0,8cm\)

a) Phương trình sóng tại điểm cách nguồn đoạn d:

\(\begin{array}{l}u = 2A\cos \dfrac{{\pi ({d_2} - {d_1})}}{\lambda }cos(2\pi ft - \dfrac{{\pi ({d_2} + {d_1})}}{\lambda }) = 2A\cos \dfrac{{\pi (8 - 8)}}{{0,8}}cos(2\pi .100t - \dfrac{{\pi .(8 + 8)}}{{0,8}})\\ = 2Acos(200\pi t - 20\pi )\end{array}\)

b) Khi hệ vân giao thoa đã ổn định thì trung điểm \(I\) của \({S_1}{S_2}\) lại luôn luôn là cực đại giao thoa. Do đó ta phải có:

\(\begin{array}{l}{S_1}I = {S_2}I = k\dfrac{\lambda }{2} + \dfrac{\lambda }{4} = (2k + 1)\dfrac{\lambda }{4}\\{S_1}{S_2} = 2{S_1}I = (2k + 1)\dfrac{\lambda }{2}\end{array}\)

Ban đầu ta có: \({S_1}{S_2} = 4cm = 10\lambda  = 20\dfrac{\lambda }{2}\)

Vậy chỉ cần tăng khoảng cách  \({S_1}{S_2}\) thêm \(\dfrac{\lambda }{2} = 0,4cm\) 

Khi đó không tính gợn thẳng trùng với đường trung trực của \({S_1}{S_2}\) thì có \(20\) gợn sóng hình hypebol.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.9 trên 7 phiếu

Các bài liên quan: - Bài 8. Giao thoa sóng

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài