Bài 9 trang 29 SGK Hình học 10


Đề bài

Trong mặt phẳng tọa độ \(Oxy\) cho hình bình hành \(OABC\), \(C\) nằm trên \(Ox\).

Khẳng định nào sau đây là đúng?

A. \(\overrightarrow {AB} \) có tung độ khác \(0\)

B. \(A\) và \(B\) có tung độ khác nhau

C. \(C\) có hoành độ bằng \(0\)

D. \({x_A} + {x_C} - {x_B} = 0\)

Video hướng dẫn giải

Lời giải chi tiết

Trong mặt phẳng tọa độ \(O xy\), hình bình hành \(OABC\) có \(C\) nằm trên \(Ox\) nên điểm \(C({x_c};0)\)

\(\overrightarrow {AB}  = \overrightarrow {OC} \)\(=(x_C-0;0-0)=(x_C;0)\)

Do đó \(\overrightarrow {AB}\) có tung độ bằng 0 nên A sai.

\(\overrightarrow {AB}\) có tung độ bằng 0 nên \(y_B-y_A=0\) hay \(y_B=y_A\) nên B sai.

C sai vì C không trùng O nên \(x_C\ne 0\).

D đúng vì:

Từ \(\overrightarrow {AB}  = \overrightarrow {OC} \) \( \Rightarrow {x_B} - {x_A} = {x_C}-x_O\) \( \Leftrightarrow {x_A} + {x_C} - {x_B} = 0\)

Chọn D.

Loigiaihay.com


Bình chọn:
4.5 trên 10 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài