Bài 29 trang 32 SGK Hình học 10


Giải bài 29 trang 32 SGK Hình học 10. Khẳng định nào trong các khẳng định sau đây là đúng?

Đề bài

Khẳng định nào trong các khẳng định sau đây là đúng?

A) Hai vectơ\(\left\{ \matrix{\overrightarrow a = ( - 5;0) \hfill \cr \overrightarrow b = ( - 4;0) \hfill \cr} \right.\) cùng hướng

B) Vectơ \(c = (7; 3)\) là vecto đối của \(\overrightarrow d  = ( - 7;3)\)

C) Hai vecto\(\left\{ \matrix{\overrightarrow u = (4;2) \hfill \cr \overrightarrow v = (8;3) \hfill \cr} \right.\) cùng phương

D) Hai vecto\(\left\{ \matrix{\overrightarrow a = (6;3) \hfill \cr \overrightarrow b = (2;1) \hfill \cr} \right.\) ngược hướng.

Video hướng dẫn giải

Lời giải chi tiết

Ta có:

\(\left\{ \matrix{
\overrightarrow a = ( - 5;0) \hfill \cr
\overrightarrow b = ( - 4;0) \hfill \cr} \right. \Rightarrow \overrightarrow a = {5 \over 4}\overrightarrow b \)

Vì \(\frac{5}{4} > 0\) nên \(\overrightarrow a\) và \(\overrightarrow b\) cùng hướng.

Vậy chọn A.

(B) Sai. Vec tơ đối của \(\overrightarrow c  = \left( {7;3} \right)\) là vec tơ \(\overrightarrow d  = \left( { - 7; - 3} \right)\)

(C) Sai. \(\overrightarrow u  = \left( {4;2} \right)\) và \(\overrightarrow v  = \left( {8;3} \right)\) không cùng phương vì giả sử \(\overrightarrow u ,\overrightarrow v \) cùng phương thì tồn tại k để \(\overrightarrow u  = k\overrightarrow v  \Leftrightarrow \left\{ \begin{array}{l}4 = k.8\\2 = k.3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = \frac{1}{2}\\k = \frac{2}{3}\end{array} \right.\)  (vô lí)

(D) Sai. Vì \(\overrightarrow a  = 3\overrightarrow b \) nên \(\overrightarrow a ,\overrightarrow b \) cùng hướng.

Chú ý:

Có thể giải thích đáp án A cách khác như sau:

(A) đúng vì \(\overrightarrow a  = \left( { - 5;0} \right)\) và \(\overrightarrow b  = \left( { - 4;0} \right)\) đều ngược hướng với \(\overrightarrow i \) nên \(\overrightarrow a ,\overrightarrow b \)  cùng hướng.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 5 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài