Bài 5 trang 27 SGK Hình học 10

Bình chọn:
3.8 trên 5 phiếu

Giải bài 5 trang 27 SGK Hình học 10. Cho tam giác đều ABC nội tiếp đường tròn tâm O. Hãy xác định các điểm M, N, P sao cho:

Đề bài

Cho tam giác đều \(ABC\) nội tiếp đường tròn tâm \(O\). Hãy xác định các điểm \(M, N, P\) sao cho:

a) \(\overrightarrow {OM}  = \overrightarrow {OA}  + \overrightarrow {OB} \)

b) \(\overrightarrow {OP}  = \overrightarrow {OC}  + \overrightarrow {OA} \)

c) \(\overrightarrow {ON}  = \overrightarrow {OB}  + \overrightarrow {OC} \)

Lời giải chi tiết

 

a) Nối \(OC\) và kéo dài cắt đường tròn tại điểm \(M\)

Dễ thấy, tam giác \(OAM\) là tam giác đều và \(OAMB\) là hình bình hành, cho ta:

  \(\overrightarrow {OA}  + \overrightarrow {OB}  = \overrightarrow {OM} \)                                                    

b) Nối \(OB\) và kéo dài cắt đường tròn tại điểm \(P\)

Tương tự như trên ta có:

\(\overrightarrow {OP}  = \overrightarrow {OC}  + \overrightarrow {OA} \)

c) Nối \(OA\) và kéo dài cắt đường tròn tại điểm \(N\)

Tương tự như trên ta có:

\(\overrightarrow {ON}  = \overrightarrow {OB}  + \overrightarrow {OC} \)

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan