Bài 8 trang 28 SGK Hình học 10


Giải bài 8 trang 28 SGK Hình học 10. Cho tam giác OAB. Gọi M và N lần lượt là trung điểm của OA và OB. Tìm các số M, N sao cho:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(OAB\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(OA\) và \(OB\). Tìm các số \(m, n\) sao cho:

LG a

\(\overrightarrow {OM}  = m\overrightarrow {OA}  + n\overrightarrow {OB} \)

Phương pháp giải:

Biểu diễn \(\overrightarrow {OM}  \) qua \(\overrightarrow {OA}  ,\overrightarrow {OB} \) suy ra m, n.

Lời giải chi tiết:

Ta có: M là trung điểm của OA nên:

\(\begin{array}{l}
\overrightarrow {OM} = \frac{1}{2}\overrightarrow {OA} = \frac{1}{2}.\overrightarrow {OA} + 0.\overrightarrow {OB} \\
\Rightarrow m = \frac{1}{2},n = 0
\end{array}\)

Cách trình bày khác:

Ta có: \(\overrightarrow {OM}  = {1 \over 2}\overrightarrow {OA} \)

\(\begin{array}{l}
\overrightarrow {OM} = n\overrightarrow {OA} + n\overrightarrow {OB}\\  \Rightarrow m\overrightarrow {OA} + n\overrightarrow {OB} = \frac{1}{2}\overrightarrow {OA} \\
 \Leftrightarrow m\overrightarrow {OA}  + n\overrightarrow {OB}  - \frac{1}{2}\overrightarrow {OA}  = \overrightarrow 0  \\
\Leftrightarrow \left( {m - \frac{1}{2}} \right)\overrightarrow {OA} + n\overrightarrow {OB} = \overrightarrow 0 \\
\Leftrightarrow \left\{ \begin{array}{l}
m - \frac{1}{2} = 0\\
n = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m = \frac{1}{2}\\
n = 0
\end{array} \right..
\end{array}\)

Vậy \(m = {1 \over 2}; \, \, n = 0.\)

LG b

\(\overrightarrow {AN}  = m\overrightarrow {OA}  + n\overrightarrow {OB} \)

Lời giải chi tiết:

Ta có: N là trung điểm OB nên \(\overrightarrow {ON}  = \frac{1}{2}\overrightarrow {OB} \).

Khi đó,

\(\begin{array}{l}
\overrightarrow {AN} = \overrightarrow {ON} - \overrightarrow {OA} \\
= \frac{1}{2}\overrightarrow {OB} - \overrightarrow {OA} \\
= \left( { - 1} \right).\overrightarrow {OA} + \frac{1}{2}.\overrightarrow {OB} \\
\Rightarrow m = - 1,n = \frac{1}{2}
\end{array}\)

Cách khác:

Ta có: vì \(N\) là trung điểm \(OB\)

\(\eqalign{
& 2\overrightarrow {AN} = \overrightarrow {AO} + \overrightarrow {AB} \cr 
& \Rightarrow 2\overrightarrow {AN} = \overrightarrow {AO} + \overrightarrow {AO} + \overrightarrow {OB} \cr 
& \Rightarrow 2\overrightarrow {AN} = 2\overrightarrow {AO} + \overrightarrow {OB}\cr& \Rightarrow \overrightarrow {AN} = - \overrightarrow {OA} + {1 \over 2}\overrightarrow {OB} \cr} \)

\( \Leftrightarrow m\overrightarrow {OA}  + n\overrightarrow {OB}  =  - \overrightarrow {OA}  + \frac{1}{2}\overrightarrow {OB} \)

\(\Leftrightarrow m\overrightarrow {OA}  + n\overrightarrow {OB}  + \overrightarrow {OA}  - \frac{1}{2}\overrightarrow {OB}  = \overrightarrow 0 \)

\(\begin{array}{l}
\Leftrightarrow \left( {m + 1} \right)\overrightarrow {OA} + \left( {n - \frac{1}{2}} \right)\overrightarrow {OB} = \overrightarrow 0 \\
\Leftrightarrow \left\{ \begin{array}{l}
m + 1 = 0\\
n - \frac{1}{2} = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m = - 1\\
n = \frac{1}{2}
\end{array} \right..
\end{array}\)

Vậy \(m =  - 1; \, \, n = {1 \over 2}.\)

LG c

\(\overrightarrow {MN}  = m\overrightarrow {OA}  + n\overrightarrow {OB} \)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\overrightarrow {MN} = \overrightarrow {ON} - \overrightarrow {OM} \\
= \frac{1}{2}\overrightarrow {OB} - \frac{1}{2}\overrightarrow {OA} \\
= - \frac{1}{2}\overrightarrow {OA} + \frac{1}{2}\overrightarrow {OB} \\
\Rightarrow m = - \frac{1}{2},n = \frac{1}{2}
\end{array}\)

Cách khác:

\(\eqalign{ \, \,& \overrightarrow {MN} = {1 \over 2}\overrightarrow {AB}\cr& \Rightarrow \overrightarrow {MN} = {1 \over 2}(\overrightarrow {AO} + \overrightarrow {OB} ) \cr & \Rightarrow \overrightarrow {MN} = - {1 \over 2}\overrightarrow {OA} + {1 \over 2}\overrightarrow {OB} \cr} \)

\( \Leftrightarrow m\overrightarrow {OA}  + n\overrightarrow {OB}  =  - \frac{1}{2}\overrightarrow {OA}  + \frac{1}{2}\overrightarrow {OB}\)

\(  \Leftrightarrow m\overrightarrow {OA}  + n\overrightarrow {OB}  + \frac{1}{2}\overrightarrow {OA}  - \frac{1}{2}\overrightarrow {OB}  = \overrightarrow 0 \)

\(\begin{array}{l}
\Leftrightarrow \left( {m + \frac{1}{2}} \right)\overrightarrow {OA} + \left( {n - \frac{1}{2}} \right)\overrightarrow {OB} = \overrightarrow 0 \\
\Leftrightarrow \left\{ \begin{array}{l}
m + \frac{1}{2} = 0\\
n - \frac{1}{2} = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m = - \frac{1}{2}\\
n = \frac{1}{2}
\end{array} \right..
\end{array}\)

Vậy \(m =  - {1 \over 2}, \, \, n = {1 \over 2}.\)

LG d

 \(\overrightarrow {MB}  = m\overrightarrow {OA}  + n\overrightarrow {OB} \)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\overrightarrow {MB} = \overrightarrow {OB} - \overrightarrow {OM} \\
= \overrightarrow {OB} - \frac{1}{2}\overrightarrow {OA} \\
= - \frac{1}{2}\overrightarrow {OA} + \overrightarrow {OB} \\
\Rightarrow m = - \frac{1}{2},n = 1
\end{array}\)

Cách khác:

Vì M là trung điểm AO nên ta có:

\(\eqalign{
& 2\overrightarrow {BM} = \overrightarrow {BA} + \overrightarrow {BO}\cr& \Rightarrow 2\overrightarrow {BM} = \overrightarrow {BO} + \overrightarrow {OA} + \overrightarrow {BO} \cr 
& \Rightarrow 2\overrightarrow {BM} = 2\overrightarrow {BO} + \overrightarrow {OA}\cr& \Rightarrow 2\overrightarrow {MB} = - \overrightarrow {OA} + 2\overrightarrow {OB} \cr 
& \Rightarrow \overrightarrow {MB} = - {1 \over 2}\overrightarrow {OA} + \overrightarrow {OB} \cr} \)

\( \Leftrightarrow m\overrightarrow {OA}  + n\overrightarrow {OB}  =  - \frac{1}{2}\overrightarrow {OA}  + \overrightarrow {OB} \)

\(\Leftrightarrow m\overrightarrow {OA}  + n\overrightarrow {OB}  + \frac{1}{2}\overrightarrow {OA}  - \overrightarrow {OB}  = \overrightarrow 0 \)

\(\begin{array}{l}
\Leftrightarrow \left( {m + {1 \over 2} } \right)\overrightarrow {OA} + \left( {n - 1} \right)\overrightarrow {OB} = \overrightarrow 0 \\
\Leftrightarrow \left\{ \begin{array}{l}
m + \frac{1}{2} = 0\\
n - 1 = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m = - \frac{1}{2}\\
n = 1
\end{array} \right..
\end{array}\)

Vậy \(m =  - {1 \over 2}, \, \, n = 1.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.4 trên 27 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài