Các dạng toán về phương trình


Các dạng toán về phương trình

1. Phương trình chứa dấu giá trị tuyệt đối

a. Phương trình chứa ẩn ở mẫu thức

Phương pháp:

- Bước 1: Đặt điều kiện xác định:

+) \(\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\) xác định nếu \(g\left( x \right) \ne 0\).

+) \(\sqrt {f\left( x \right)} \) xác định nếu \(f\left( x \right) \ge 0\).

- Bước 2: Quy đồng mẫu thức, khử mẫu và giải phương trình thu được.

- Bước 3: Kiểm tra điều kiện và kết luận nghiệm.

b. Phương trình dạng \(\left| {f\left( x \right)} \right| = \left| {g\left( x \right)} \right|\)

Phương pháp:

Cách 1:

- Bước 1: Biến đổi \(\left| {f\left( x \right)} \right| = \left| {g\left( x \right)} \right| \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f\left( x \right) =  - g\left( x \right)\end{array} \right.\)

- Bước 2: Giải lần lượt hai phương trình và kết luận.

Cách 2:

- Bước 1: Bình phương hai vế \(\left| {f\left( x \right)} \right| = \left| {g\left( x \right)} \right| \Leftrightarrow {f^2}\left( x \right) = {g^2}\left( x \right)\)

- Bước 2: Giải phương trình trên tìm nghiệm và kết luận.

c. Phương trình dạng \(\left| {f\left( x \right)} \right| = g\left( x \right)\)

Phương pháp:

Cách 1: Phá dấu giá trị tuyệt đối.

- TH1: \(f\left( x \right) \ge 0\), phương trình \( \Leftrightarrow f\left( x \right) = g\left( x \right)\).

- TH2: \(f\left( x \right) < 0\), phương trình \( \Leftrightarrow  - f\left( x \right) = g\left( x \right)\).

Cách 2: Biến đổi tương đương.

Phương trình \( \Leftrightarrow \left\{ \begin{array}{l}g\left( x \right) \ge 0\\f\left( x \right) =  \pm g\left( x \right)\end{array} \right.\)

Với các bài toán có hai dấu giá trị tuyệt đối trở lên, ta cần phá các dấu giá trị tuyệt đối và giải các phương trình thu được rồi kết luận tập nghiệm.

 

2. Phương trình chứa căn

Phương pháp chung:

- Bước 1: Đặt điều kiện cho căn có nghĩa.

- Bước 2: Chuyển vế để hai vế không âm.

- Bước 3: Bình phương hai vế để đưa về một trong các dạng phương trình căn cơ bản.

a) Phương pháp đặt ẩn phụ

Loại 1: \(a.f\left( x \right) + b\sqrt {f\left( x \right)}  + c = 0\)

Đặt \(t = \sqrt {f\left( x \right)}  \ge 0\) thì phương trình trở thành \(a{t^2} + bt + c = 0\)

Loại 2: \(\sqrt {f\left( x \right)}  + \sqrt {g\left( x \right)}  + \sqrt {f\left( x \right).g\left( x \right)}  = h\left( x \right)\)

Đặt \(t = \sqrt {f\left( x \right)}  + \sqrt {g\left( x \right)} \) và biến đổi phương trình về ẩn \(t\)

Loại 3: \(\sqrt {f\left( x \right)}  + \sqrt {g\left( x \right)}  = h\left( x \right)\)

Đặt ẩn phụ \(u = \sqrt {f\left( x \right)} ,v = \sqrt {g\left( x \right)} \) đưa về hệ phương trình với ẩn \(u,v\)

b) Đưa về phương trình tích

Phương pháp chung:

Đoán nghiệm của phương trình để định hướng đưa về phương trình dạng tích hoặc nhân biểu thức liên hợp.

c) Sử dụng hằng đẳng thức đưa về phương trình cơ bản

Loại 1: \(\sqrt[3]{A} + \sqrt[3]{B} = \sqrt[3]{C}\,\,\,\,\,\,\left( * \right)\)

- Bước 1: Biến đổi \(\left( * \right) \Leftrightarrow {\left( {\sqrt[3]{A} + \sqrt[3]{B}} \right)^3} = {\left( {\sqrt[3]{C}} \right)^3} \Leftrightarrow A + B + 3\sqrt[3]{{AB}}\left( {\sqrt[3]{A} + \sqrt[3]{B}} \right) = C\,\,\,\,\left( {**} \right)\)

- Bước 2: Thay \(\sqrt[3]{A} + \sqrt[3]{B} = \sqrt[3]{C}\) vào \(\left( {**} \right)\) ta được: \(\left( {**} \right) \Rightarrow A + B + 3\sqrt[3]{{ABC}} = C\)

- Bước 3: Giải phương trình trên và kết luận nghiệm

Loại 2: \(\sqrt {f\left( x \right)}  + \sqrt {g\left( x \right)}  = \sqrt {h\left( x \right)}  + \sqrt {k\left( x \right)} \)  với \(\left[ \begin{array}{l}f\left( x \right) + h\left( x \right) = g\left( x \right) + k\left( x \right)\\f\left( x \right).h\left( x \right) = g\left( x \right).k\left( x \right)\end{array} \right.\)

- Bước 1: Biến đổi phương trình về dạng: \(\sqrt {f\left( x \right)}  - \sqrt {h\left( x \right)}  = \sqrt {k\left( x \right)}  - \sqrt {g\left( x \right)} \)

- Bước 2: Bình phương, giải phương trình hệ quả.

Loại 3: Căn trong căn

Sử dụng hằng đẳng thức \({a^2} + {b^2} \pm 2ab = {\left( {a \pm b} \right)^2}\) cần lưu ý: \(\left| A \right| = \left\{ \begin{array}{l}A\,\,\,khi\,\,\,A \ge 0\\A\,\,\,khi\,\,\,A < 0\end{array} \right.\)


Bình chọn:
3.8 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí