Bài 2 trang 62 SGK Đại số 10

Bình chọn:
4.7 trên 26 phiếu

Giải bài 2 trang 62 SGK Đại số 10. Giải và biện luận các phương trình sau theo tham số m

Đề bài

Giải và biện luận các phương trình sau theo tham số \(m\)

a) \(m(x - 2) = 3x + 1\);

b) \(m^2x + 6 = 4x + 3m\);

c) \((2m + 1)x – 2m = 3x – 2\).

Phương pháp giải - Xem chi tiết

Cách giải và biện luận phương trình dạng: \(ax + b = 0\) (1):

+) TH1: \(a \ne 0\)  phương trình (1) có nghiệm duy nhất \(x = \frac{{ - b}}{a}\)

+) TH2: \(a=0\)

   *) \(b \ne 0\) khi đó (1) vô nghiệm

    *) \(b=0\) khi đó phương trình (1) có vô số nghiệm (hay nghiệm đúng với mọi x).

Lời giải chi tiết

a) \(m(x - 2) = 3x + 1\)

\(⇔ (m – 3)x = 2m + 1\).

+) Nếu \(m ≠ 3\), phương trình có nghiệm duy nhất \(x = \frac{2m +1}{m-3}\).

+) Nếu \(m = 3\) phương trình trở thành \(0.x = 7\).

    Phương trình vô nghiệm.

b) \(m^2x + 6 = 4x + 3m\)

\(⇔ (m^2– 4)x = 3m – 6\).

+) Nếu \(m^2– 4 ≠ 0 ⇔ m ≠ ± 2\), phương trình có nghiệm \(x = \frac{3m - 6}{m^{2}-4}=\frac{3}{m+2}\).

+) Nếu \(m = 2,\) phương trình trở thành \(0.x = 0\) đúng với mọi \(x ∈ \mathbb R\).

    Phương trình có vô số nghiêm.

+) Nếu \(m = -2\), phương trình trở thành \(0.x = -12\), phương trình vô nghiệm.

c) \((2m + 1)x – 2m = 3x – 2\)

\(⇔ 2(m – 1)x = 2(m-1)\).

+) Nếu \(m ≠ 1\), phương trình có nghiệm duy nhất \(x = 1\).

+) Nếu \(m = 1\), phương trình trở thành \(0.x=0\) đúng vCới mọi \(x ∈\mathbb R\).

    Phương trình có vô số nghiệm.

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

Các bài liên quan: - Bài 2. Phương trình quy về phương trình bậc nhất, bậc hai

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu