Bài 8 trang 63 SGK Đại số 10

Bình chọn:
4.3 trên 15 phiếu

Giải bài 8 trang 63 SGK Đại số 10. Cho phương trình

Đề bài

 Cho phương trình \(3x^2– 2(m + 1)x + 3m – 5 = 0\).

Xác định \(m\) để phương trình có một nghiệm gấp ba nghiệm kia. Tính các nghiệm trong trường hợp đó

Lời giải chi tiết

Giả sử phương trình có hai nghiệm \(x_1\) và \(x_2\), phương trình có một nghiệm gấp ba nghiệm kia nên ta có:                           \({x_2} = 3{x_1}\).

Theo định lí Viet ta có:

\({x_1} + {x_2} = 4{x_1} = {{2(m + 1)} \over 3} \Rightarrow {x_1} = {{m + 1} \over 6}\)

Thay \(x_1=\frac{m+1}{6}\) vào phương trình ta được:

\(3.{\left( {{{m + 1} \over 6}} \right)^2} - 2(m + 1).{{m + 1} \over 6}\)\( + 3m - 5 = 0 \)

\(\eqalign{
& \Leftrightarrow - 3{m^2} + 30m - 63 = 0 \cr
& \Leftrightarrow \left[ \matrix{
m = 3 \hfill \cr
m = 7 \hfill \cr} \right. \cr} \)

+) Với \(m = 3\) phương trình có hai nghiệm \(x_1=\frac{2}{3}\); \(x_2= 2\).

+) Với \(m = 7\) phương trình có hai nghiệm \(x_1=\frac{4}{3}\); \(x_2= 4\).

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan