
Tính đạo hàm của mỗi hàm số sau :
LG a
\(y = {1 \over {2x - 1}}\,\text{ với }\,x \ne {1 \over 2}\)
Phương pháp giải:
Sử dụng công thức \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}}\)
Lời giải chi tiết:
Đặt \(f(x)=y = {1 \over {2x - 1}}\)
Với \({x_0} \ne {1 \over 2}\) ta có:
\(\eqalign{ & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{{1 \over {2{x_0} + 2\Delta x - 1}} - {1 \over {2{x_0} - 1}}} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{ - 2\Delta x} \over {\Delta x\left( {2{x_0} + 2\Delta x - 1} \right)\left( {2{x_0} - 1} \right)}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{ - 2} \over {\left( {2{x_0} + 2\Delta x - 1} \right)\left( {2{x_0} - 1} \right)}} \cr & = {{ - 2} \over {{{\left( {2{x_0} - 1} \right)}^2}}} \cr} \)
LG b
\(y = \sqrt {3 - x} \) với \(x < 3\).
Lời giải chi tiết:
Đặt \(f(x)=y = \sqrt {3 - x} \)
Với x0 < 3, ta có:
\(\eqalign{ & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{\sqrt {3 - {x_0} - \Delta x} - \sqrt {3 - {x_0}} } \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{3 - {x_0} - \Delta x - 3 + {x_0}}}{{\Delta x\left( {\sqrt {3 - {x_0} - \Delta x} + \sqrt {3 - {x_0}} } \right)}} \cr &= \mathop {\lim }\limits_{\Delta x \to 0} \frac{{ - \Delta x}}{{\Delta x\left( {\sqrt {3 - {x_0} - \Delta x} + \sqrt {3 - {x_0}} } \right)}}\cr & = \mathop {\lim }\limits_{\Delta x \to 0} {{ - 1} \over {\sqrt {3 - {x_0} - \Delta x} + \sqrt {3 - {x_0}} }} \cr &= {{ - 1} \over {2\sqrt {3 - {x_0}} }} \cr} \)
Loigiaihay.com
a. Tính f’(3) và f’(-4) nếu
Cho hàm số y = f(x) có đạo hàm tại điểm x0
Hình 5.4 là đồ thị của hàm số y = f(x) trên
Chứng minh rằng để đường thẳng y = ax + b
a. Chứng minh rằng hàm số đã cho liên tục tại điểm x = 0
Hình 5.5 là đồ thị của hàm số y = f(x) xác
Tìm đạo hàm của mỗi hàm số sau trên R.
Tìm đạo hàm của hàm số
Một vật rơi tự do có phương trình chuyển động
Viết phương trình tiếp tuyến
Cho parabol y = x2
Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 (a là hằng số).
Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0
Tìm số gia của hàm số tại điểm x0 = 1 ứng với số gia ∆x, biết
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: