Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao


Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 (a là hằng số).

Lựa chọn câu để xem lời giải nhanh hơn

Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 (a là hằng số).

LG a

 \(y = ax + 3\)

Phương pháp giải:

- Tính \(\Delta y=f(x_0+\Delta x)-f(x_0)\)

- Tìm giới hạn \(\mathop {\lim }\limits_{\Delta x \to 0} \dfrac{{\Delta y}}{{\Delta x}}\)

Lời giải chi tiết:

\(f(x) = ax + 3\), cho x0 một số gia Δx, ta có:

\(\eqalign{  & \Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)  \cr  &  = a\left( {{x_0} + \Delta x} \right) + 3 - \left( {a{x_0} + 3} \right)\cr & = a\Delta x  \cr  &  \Rightarrow {{\Delta y} \over {\Delta x}} = a\cr & \Rightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = a \cr} \)

LG b

\(y = {1 \over 2}a{x^2}\)

Lời giải chi tiết:

\(\eqalign{  & f\left( x \right) = {1 \over 2}a{x^2}\cr &\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)  \cr  &  = {1 \over 2}a{\left( {{x_0} + \Delta x} \right)^2} - {1 \over 2}ax_0^2  \cr  & = \frac{1}{2}ax_0^2 + a{x_0}\Delta x + \frac{1}{2}a{\left( {\Delta x} \right)^2} - \frac{1}{2}ax_0^2\cr &   = a{x_0}\Delta x + \frac{1}{2}a{\left( {\Delta x} \right)^2}  \cr  & = \Delta x\left( {a{x_0} + \frac{1}{2}a\Delta x} \right)\cr &  \Rightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}}  \cr  &  = \mathop {\lim }\limits_{\Delta x \to 0} \left( {a{x_0} + \frac{1}{2}a\Delta x} \right) = a{x_0} \cr} \)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 1. Khái niệm đạo hàm

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài