
Một vật rơi tự do có phương trình chuyển động là \(S = {1 \over 2}g{t^2},\) trong đó \(g = 9,8m/{s^2}\) và t được tính bằng giây (s).
LG a
Tìm vận tốc trung bình trong khoảng thời gian từ t đến t + ∆t với độ chính xác 0,001, biết t = 5 và ∆t lần lượt bằng 0,1 ; 0,01 ; 0,001.
Giải chi tiết:
Vận tốc trung bình của chuyển động là :
\(\eqalign{ & {{\Delta s} \over {\Delta t}} = {{s\left( {t + \Delta t} \right) - s\left( t \right)} \over {\Delta t}} \cr & = {1 \over 2}g.{{{{\left( {t + \Delta t} \right)}^2} - {t^2}} \over {\Delta t}} \cr & = {1 \over 2}g\left( {2t + \Delta t} \right) \cr & = {1 \over 2}g.\left( {10 + \Delta t} \right) \cr} \)
Với \(\Delta t = 0,1\,\text{ thì }\,{{\Delta s} \over {\Delta t}} = {1 \over 2}.g.10,1 = 49,49\,m/s\)
Với \(\Delta t = 0,01\,\text{ thì }\,{{\Delta s} \over {\Delta t}} = {1 \over 2}.g.10,01 = 49,049\,m/s\)
Với \(\Delta t = 0,001\,\text{ thì }\,{{\Delta s} \over {\Delta t}} = {1 \over 2}.g.10,001 = 49,0049\,m/s\)
LG b
Tìm vận tốc tại thời điểm t = 5.
Giải chi tiết:
Vận tốc tại thời điểm \(t = 5:v = S'\left( 5 \right) = \mathop {\lim }\limits_{\Delta t \to 0} {{\Delta s} \over {\Delta t}} = {1 \over 2}g.10 = 49\,m/s\)
Loigiaihay.com
Tìm đạo hàm của hàm số
Tìm đạo hàm của mỗi hàm số sau trên R.
Tính đạo hàm của mỗi hàm số sau :
a. Tính f’(3) và f’(-4) nếu
Cho hàm số y = f(x) có đạo hàm tại điểm x0
Hình 5.4 là đồ thị của hàm số y = f(x) trên
Chứng minh rằng để đường thẳng y = ax + b
a. Chứng minh rằng hàm số đã cho liên tục tại điểm x = 0
Hình 5.5 là đồ thị của hàm số y = f(x) xác
Viết phương trình tiếp tuyến
Cho parabol y = x2
Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 (a là hằng số).
Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0
Tìm số gia của hàm số tại điểm x0 = 1 ứng với số gia ∆x, biết
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: