
Cho hàm số \(y = \left| x \right|\)
LG a
Chứng minh rằng hàm số đã cho liên tục tại điểm x = 0
Giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \left| x \right| = 0 = f\left( 0 \right)\)
Vậy f liên tục tại x = 0
LG b
Tính đạo hàm của hàm số tại x = 0, nếu có.
Giải chi tiết:
Ta có:
\(\eqalign{ & \mathop {\lim }\limits_{x \to {0^ + }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ + }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {x \over x} = 1 \cr & \mathop {\lim }\limits_{x \to {0^ - }} {{f\left( x \right) - f\left( 0 \right)} \over x} = \mathop {\lim }\limits_{x \to {0^ - }} {{\left| x \right|} \over x} = \mathop {\lim }\limits_{x \to 0} {{ - x} \over x} = - 1 \cr} \)
Do đó không tồn tại \(\mathop {\lim }\limits_{x \to 0} {{f\left( x \right) - f\left( 0 \right)} \over x}\) nên hàm số f không có đạo hàm tại x = 0
LG c
Mệnh đề “Hàm số liên tục tại điểm x0 thì có đạo hàm tại x0 ” đúng hay sai ?
Giải chi tiết:
Mệnh đề sai. Thật vậy, hàm số \(f\left( x \right) = \left| x \right|\) liên tục tại điểm 0 (theo câu a) nhưng không có đạo hàm tại điểm đó (theo câu b).
Loigiaihay.com
Hình 5.5 là đồ thị của hàm số y = f(x) xác
Chứng minh rằng để đường thẳng y = ax + b
Hình 5.4 là đồ thị của hàm số y = f(x) trên
Cho hàm số y = f(x) có đạo hàm tại điểm x0
a. Tính f’(3) và f’(-4) nếu
Tính đạo hàm của mỗi hàm số sau :
Tìm đạo hàm của mỗi hàm số sau trên R.
Tìm đạo hàm của hàm số
Một vật rơi tự do có phương trình chuyển động
Viết phương trình tiếp tuyến
Cho parabol y = x2
Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 (a là hằng số).
Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0
Tìm số gia của hàm số tại điểm x0 = 1 ứng với số gia ∆x, biết
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: