 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 1. Khái niệm đạo hàm
                                                        Bài 1. Khái niệm đạo hàm
                                                    Câu 7 trang 192 SGK Đại số và Giải tích 11 Nâng cao>
Tìm đạo hàm của hàm số
Đề bài
Tìm đạo hàm của hàm số \(f\left( x \right) = {x^5}\) trên \(\mathbb R\) rồi suy ra \(f'\left( { - 1} \right),f'\left( { - 2} \right)\,\text{ và }\,f'\left( 2 \right)\)
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} {{f\left( x \right) - f\left( {{x_0}} \right)} \over {x - {x_0}}} \)
Lời giải chi tiết
Với \(x_0\in\mathbb R\)
Ta có:
\(\eqalign{ & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} {{f\left( x \right) - f\left( {{x_0}} \right)} \over {x - {x_0}}}\cr & = \mathop {\lim }\limits_{x \to {x_0}} {{{x^5} - x_0^5} \over {x - {x_0}}} \cr & = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^4} + {x^3}{x_0} + {x^2}x_0^2 + xx_0^3 + x_0^4} \right)\cr & = 5x_0^4 \cr & f'\left( { - 1} \right) =5.(-1)^4== 5\cr &f'\left( { - 2} \right) = {5.(-2)^4} = 80\cr &f'\left( 2 \right) =5.2^4= 80 \cr} \)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            