Câu 6.69, 6.70, 6.71, 6.72, 6.73 trang 208, 209 SBT Đại số 10 Nâng cao


Giải bài tập Câu 6.69, 6.70, 6.71, 6.72, 6.73 trang 208, 209 SBT Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Câu 6.69

\(\sin \dfrac{{3\pi }}{{10}}\) bằng:

A. \(\cos \dfrac{{4\pi }}{5};\)                   B. \(\cos \dfrac{\pi }{5};\)

C. \(1 - \cos \dfrac{\pi }{5};\)              D. \( - \cos \dfrac{\pi }{5}\).

Lời giải chi tiết:

Chọn B

Câu 6.70

\(\sin \dfrac{\pi }{5}\cos \dfrac{\pi }{{30}} + \sin \dfrac{\pi }{{30}}\cos \dfrac{{4\pi }}{5}\) bằng

A. 1;                            B. \( - \dfrac{1}{2};\)

C. \(\dfrac{1}{2}\)                           D. 0

Lời giải chi tiết:

Chọn C.  (Để ý rằng \(\cos \dfrac{{4\pi }}{5} =  - \cos \dfrac{\pi }{5}\))

Câu 6.71

\(\dfrac{{\sin \dfrac{\pi }{9} + \sin \dfrac{{5\pi }}{9}}}{{\cos \dfrac{\pi }{9} + \cos \dfrac{{5\pi }}{9}}}\) bằng

A. \(\dfrac{1}{{\sqrt 3 }};\)                B. \( - \dfrac{1}{{\sqrt 3 }};\)

C. \(\sqrt 3 ;\)                  D. \( - \sqrt 3 .\)

Lời giải chi tiết:

Chọn C.

Câu 6.72

\(\dfrac{{\sin \dfrac{{5\pi }}{9} - \sin \dfrac{\pi }{9}}}{{\cos \dfrac{{5\pi }}{9} - \cos \dfrac{\pi }{9}}}\) bằng

A. \(\dfrac{1}{{\sqrt 3 }};\)                B. \( - \dfrac{1}{{\sqrt 3 }};\)

C. \(\sqrt 3 ;\)                  D. \( - \sqrt 3 .\)

Lời giải chi tiết:

Chọn B.

Câu 6.73

Giá trị lớn nhất của biểu thức \({\sin ^4}\alpha  + {\cos ^4}\alpha \) là

A. 1;                            B. \(\dfrac{1}{4};\)

C. \(\dfrac{1}{2};\)                          D. Không phải ba giá trị trên

Lời giải chi tiết:

Chọn A. (Để ý rằng \({\sin ^4}\alpha  \le {\sin ^2}\alpha ,co{s^4}\alpha  \le {\cos ^2}\alpha \))

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí