Giải SBT toán hình học và đại số 10 nâng cao
Bài tập Ôn tập chương VI – Góc lượng giác và công thức ..
Câu 6.65 trang 207 SBT Đại số 10 Nâng cao>
Giải bài tập Câu 6.65 trang 207 SBT Đại số 10 Nâng cao
Đề bài
a) Chứng minh \(\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} = - \dfrac{1}{8}\) bằng cách nhân cả hai vế với \(\sin \dfrac{{2\pi }}{9}.\)
b) Chứng minh rằng\(\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 2\cos \dfrac{{5\pi }}{9}\cos \dfrac{\pi }{3} = \cos \dfrac{{5\pi }}{9},\)
Từ đó suy ra \(\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 0\) .
c) Từ b) suy ra rằng \({\cos ^2}\dfrac{{2\pi }}{9} + {\cos ^2}\dfrac{{4\pi }}{9} + {\cos ^2}\dfrac{{8\pi }}{9} = \dfrac{3}{2}\).
d) Từ b và c) suy ra rằng:
\(\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9} + \cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} + \cos \dfrac{{8\pi }}{9}\cos \dfrac{{2\pi }}{9} = - \dfrac{3}{4}\) .
e) Từ a), b) và d) suy ra rằng
\(\left( {X - \cos \dfrac{{2\pi }}{9}} \right)\left( {X - \cos \dfrac{{4\pi }}{9}} \right)\left( {X - \cos \dfrac{{8\pi }}{9}} \right) = {X^3} - \dfrac{3}{4}X + \dfrac{1}{8},\)
từ đó ta có \(\left( {1 - \cos \dfrac{{2\pi }}{9}} \right)\left( {1 - \cos \dfrac{{4\pi }}{9}} \right)\left( {1 - \cos \dfrac{{8\pi }}{9}} \right) = \dfrac{3}{8}.\)
Suy ra
• \(\sin \dfrac{\pi }{9}\sin \dfrac{{2\pi }}{9}\sin \dfrac{{4\pi }}{9} = \dfrac{{\sqrt 3 }}{8}.\)
• \(\sin \dfrac{{5\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9} = \dfrac{{\sqrt 3 }}{8}.\)
f) Từ e) suy ra rằng
\(\sin \dfrac{\pi }{9}\sin \dfrac{{2\pi }}{9}\sin \dfrac{{3\pi }}{9}\sin \dfrac{{4\pi }}{9}\sin \dfrac{{5\pi }}{9}\sin \dfrac{{6\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9} = \dfrac{9}{{256}}.\)
(Chú ý. Người ta chứng minh được rằng không thể dùng thước và compa để dựng đa giác đều chín cạnh nội tiếp trong một đường tròn cho trước.)
Lời giải chi tiết
a) Ta có:
\(\begin{array}{l}\sin \dfrac{{2\pi }}{9}\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = \dfrac{1}{2}\sin \dfrac{{4\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = \dfrac{1}{4}\sin \dfrac{{8\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = \dfrac{1}{8}\sin \dfrac{{16\pi }}{9}\\ = \dfrac{1}{8}\sin \left( {2\pi - \dfrac{{2\pi }}{9}} \right)\\ = - \dfrac{1}{8}\sin \dfrac{{2\pi }}{9}\end{array}\)
Từ đó: \(\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} = - \dfrac{1}{8}.\)
b) Ta có
\(\begin{array}{l}\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 2\cos \dfrac{{5\pi }}{9}\cos \dfrac{\pi }{3}\\ = \cos \dfrac{{5\pi }}{9} = \cos \left( {\pi - \dfrac{{4\pi }}{9}} \right)\\ = - \cos \dfrac{{4\pi }}{9}\end{array}\)
từ đó \(\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9} = 0.\)
c) Do
\(\begin{array}{l}\cos \dfrac{{2\pi }}{9} = 2{\cos ^2}\dfrac{\pi }{9} - 1 = 2{\cos ^2}\dfrac{{8\pi }}{9} - 1,\\cos\dfrac{{4\pi }}{9} = 2{\cos ^2}\dfrac{{2\pi }}{9} - 1\\\cos \dfrac{{8\pi }}{9} = 2{\cos ^2}\dfrac{{4\pi }}{9} - 1,\end{array}\)
nên từ b) suy ra
\({\cos ^2}\dfrac{{2\pi }}{9} + {\cos ^2}\dfrac{{4\pi }}{9} + {\cos ^2}\dfrac{{8\pi }}{9} = \dfrac{3}{2}.\)
d) Với mọi số A, B, C ta có:
\(AB + BC + CA = \dfrac{1}{2}\left[ {{{\left( {A + B + C} \right)}^2} - {A^2} - {B^2} - {C^2}} \right]\) nên
\(\begin{array}{l}\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9} + \cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} + \cos \dfrac{{8\pi }}{9}\cos \dfrac{{2\pi }}{9}\\ = \dfrac{1}{2}\left[ {{{\left( {\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9}} \right)}^2} - \left( {{{\cos }^2}\dfrac{{2\pi }}{9} + {{\cos }^2}\dfrac{{4\pi }}{9} + {{\cos }^2}\dfrac{{8\pi }}{9}} \right)} \right]\\ = - \dfrac{1}{2}.\dfrac{3}{2} = - \dfrac{3}{4}.\end{array}\)
e) Ta có
\(\begin{array}{l}\left( {X - \cos \dfrac{{2\pi }}{9}} \right)\left( {X - \cos \dfrac{{4\pi }}{9}} \right)\left( {X - \cos \dfrac{{8\pi }}{9}} \right)\\ = {X^3} - \left( {\cos \dfrac{{2\pi }}{9} + \cos \dfrac{{4\pi }}{9} + \cos \dfrac{{8\pi }}{9}} \right){X^2}\\ + \left( {\cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9} + \cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9} + \cos \dfrac{{8\pi }}{9}\cos \dfrac{{2\pi }}{9}} \right)X\\ - \cos \dfrac{{2\pi }}{9}\cos \dfrac{{4\pi }}{9}\cos \dfrac{{8\pi }}{9}\\ = {X^3} - \dfrac{3}{4}X + \dfrac{1}{8}.\end{array}\)
Từ đó \(\left( {1 - \cos \dfrac{{2\pi }}{9}} \right)\left( {1 - \cos \dfrac{{4\pi }}{9}} \right)\left( {1 - \cos \dfrac{{8\pi }}{9}} \right) = \dfrac{3}{8}\), tức là
\(2{\sin ^2}\dfrac{\pi }{9}.2{\sin ^2}\dfrac{{2\pi }}{9}.2{\sin ^2}\dfrac{{4\pi }}{9} = \dfrac{3}{8}\),
suy ra
\(\sin \dfrac{\pi }{9}.\sin \dfrac{{2\pi }}{9}.\sin \dfrac{{4\pi }}{9} = \dfrac{{\sqrt 3 }}{8}\)
Đẳng thức này lại cho ta \(\sin \dfrac{{5\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9} = \dfrac{{\sqrt 3 }}{8}.\)
f) Từ e) ta suy ra:
\(\begin{array}{l}\sin \dfrac{\pi }{9}\sin \dfrac{{2\pi }}{9}\sin \dfrac{{3\pi }}{9}\sin \dfrac{{4\pi }}{9}\sin \dfrac{{5\pi }}{9}\sin \dfrac{{6\pi }}{9}\sin \dfrac{{7\pi }}{9}\sin \dfrac{{8\pi }}{9}\\ = \dfrac{{\sqrt 3 }}{8}.\dfrac{{\sqrt 3 }}{8}\sin \dfrac{\pi }{3}\sin \dfrac{{2\pi }}{3} = \dfrac{9}{{256}}.\end{array}\)
Loigiaihay.com




