Câu 23 trang 205 SGK Đại số và Giải tích 11 Nâng cao


Tính đạo hàm của mỗi hàm số sau

Lựa chọn câu để xem lời giải nhanh hơn

Tính đạo hàm của mỗi hàm số sau

LG a

\(y = {{2x + 3} \over {{x^2} - 5x + 5}}\)

Phương pháp giải:

Đạo hàm của thương \(\left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

\(y' = {{ - 2{x^2} - 6x + 25} \over {{{\left( {{x^2} - 5x + 5} \right)}^2}}}\)

LG b

\(y = {1 \over {{{\left( {{x^2} - x + 1} \right)}^5}}}\)

Lời giải chi tiết:

\(y'  = {{ - 5\left( {2x - 1} \right)} \over {{{\left( {{x^2} - x + 1} \right)}^6}}}\)

LG c

\(y = {x^2} + x\sqrt x  + 1\)

Lời giải chi tiết:

\(y'  = 2x + {3 \over 2}\sqrt x \)

LG d

\(y = \left( {x + 1} \right){\left( {x + 2} \right)^2}{\left( {x + 3} \right)^3}\)

Lời giải chi tiết:

\(\eqalign{  & y' = 2\left( {x + 2} \right){\left( {x + 3} \right)^2}\left( {3{x^2} + 11x + 9} \right) \cr} \)

LG e

\(y = \sqrt {{{{x^2} + 1} \over x}} \)

Phương pháp giải:

Sử dụng công thức \(\left( {\sqrt u } \right)' = \frac{{u'}}{{2\sqrt u }}\)

Lời giải chi tiết:

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài