Câu 23 trang 205 SGK Đại số và Giải tích 11 Nâng cao


Tính đạo hàm của mỗi hàm số sau

Lựa chọn câu để xem lời giải nhanh hơn

Tính đạo hàm của mỗi hàm số sau

LG a

\(y = {{2x + 3} \over {{x^2} - 5x + 5}}\)

Phương pháp giải:

Đạo hàm của thương \(\left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)

Lời giải chi tiết:

\(y' = {{ - 2{x^2} - 6x + 25} \over {{{\left( {{x^2} - 5x + 5} \right)}^2}}}\)

LG b

\(y = {1 \over {{{\left( {{x^2} - x + 1} \right)}^5}}}\)

Lời giải chi tiết:

\(y'  = {{ - 5\left( {2x - 1} \right)} \over {{{\left( {{x^2} - x + 1} \right)}^6}}}\)

LG c

\(y = {x^2} + x\sqrt x  + 1\)

Lời giải chi tiết:

\(y'  = 2x + {3 \over 2}\sqrt x \)

LG d

\(y = \left( {x + 1} \right){\left( {x + 2} \right)^2}{\left( {x + 3} \right)^3}\)

Lời giải chi tiết:

\(\eqalign{  & y' = 2\left( {x + 2} \right){\left( {x + 3} \right)^2}\left( {3{x^2} + 11x + 9} \right) \cr} \)

LG e

\(y = \sqrt {{{{x^2} + 1} \over x}} \)

Phương pháp giải:

Sử dụng công thức \(\left( {\sqrt u } \right)' = \frac{{u'}}{{2\sqrt u }}\)

Lời giải chi tiết:

Loigiaihay.com


Bình chọn:
3.8 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.