Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 2. Các quy tắc tính đạo hàm
Câu 21 trang 204 SGK Đại số và Giải tích 11 Nâng cao>
Hãy giải bất phương trình :
Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 2.\) Hãy giải bất phương trình :
LG a
\(f'\left( x \right) > 0\)
Phương pháp giải:
Tính f'(x) và giải các bpt.
Lời giải chi tiết:
Ta có: \(f'\left( x \right) = 3{x^2} - 6x\)
\(f'\left( x \right) > 0 \Leftrightarrow 3{x^2} - 6x > 0 \) \(\Leftrightarrow x < 0\,\text{ hoặc }\,x > 2\)
LG b
\(f'\left( x \right) \le 3\)
Lời giải chi tiết:
\(f'\left( x \right) \le 3 \Leftrightarrow 3{x^2} - 6x \le 3 \)
\(\Leftrightarrow {x^2} - 2x - 1 \le 0 \) \(\Leftrightarrow 1 - \sqrt 2 \le x \le 1 + \sqrt 2 \)
Loigiaihay.com




