Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 2. Các quy tắc tính đạo hàm
Câu 23 trang 205 SGK Đại số và Giải tích 11 Nâng cao>
Tính đạo hàm của mỗi hàm số sau
Tính đạo hàm của mỗi hàm số sau
LG a
\(y = {{2x + 3} \over {{x^2} - 5x + 5}}\)
Phương pháp giải:
Đạo hàm của thương \(\left( {\frac{u}{v}} \right)' = \frac{{u'v - uv'}}{{{v^2}}}\)
Lời giải chi tiết:

\(y' = {{ - 2{x^2} - 6x + 25} \over {{{\left( {{x^2} - 5x + 5} \right)}^2}}}\)
LG b
\(y = {1 \over {{{\left( {{x^2} - x + 1} \right)}^5}}}\)
Lời giải chi tiết:

\(y' = {{ - 5\left( {2x - 1} \right)} \over {{{\left( {{x^2} - x + 1} \right)}^6}}}\)
LG c
\(y = {x^2} + x\sqrt x + 1\)
Lời giải chi tiết:

\(y' = 2x + {3 \over 2}\sqrt x \)
LG d
\(y = \left( {x + 1} \right){\left( {x + 2} \right)^2}{\left( {x + 3} \right)^3}\)
Lời giải chi tiết:

\(\eqalign{ & y' = 2\left( {x + 2} \right){\left( {x + 3} \right)^2}\left( {3{x^2} + 11x + 9} \right) \cr} \)
LG e
\(y = \sqrt {{{{x^2} + 1} \over x}} \)
Phương pháp giải:
Sử dụng công thức \(\left( {\sqrt u } \right)' = \frac{{u'}}{{2\sqrt u }}\)
Lời giải chi tiết:

Loigiaihay.com




