Bài 2.29 trang 34 SBT Đại số 10 Nâng cao


Giải bài 2.29 trang 34 sách bài tập Đại số 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số \(y =  - {x^2} + 4x - 3\)

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho.

Lời giải chi tiết:

Hàm số \(y =  - {x^2} + 4x - 3\) có thể viết được dưới dạng

\(y =  - {\left( {x - 2} \right)^2} + 1\)

Từ đó suy ra hàm số đồng biến trên khoảng \(\left( { - \infty ;2} \right),\) nghịch biến trên khoảng \(\left( {2; + \infty } \right).\)

Bảng biến thiên :

Hàm số có giá trị lớn nhất bằng 1 khi \(x = 2.\)

Đồ thị của nó là một parabol đi qua các điểm

\((0 ; -3), (1 ; 0),\) \( (2 ; 1), (3 ; 0), (4 ; -3)\)

LG b

Dựa vào đồ thị, hãy nêu các khoảng trên đó hàm số chỉ nhận giá trị dương.

Lời giải chi tiết:

Từ đồ thị ta thấy :

Hàm số chỉ nhận giá trị dương nếu \(x \in (1 ; 3).\)

LG c

Dựa vào đồ thị, hãy nêu các khoảng trên đó hàm số chỉ nhận giá trị âm.

Lời giải chi tiết:

Hàm số chỉ nhận giá trị âm nếu

\(x \in \left( { - \infty ;1} \right) \cup \left( {3; + \infty } \right)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 3: Hàm số bậc hai

>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài