Câu 16 trang 109 SGK Đại số và Giải tích 11 Nâng cao


Cho dãy số (un) xác định bởi

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số (un) xác định bởi

\({u_1} = 1\,\text{ và }\,{u_{n + 1}} = {u_n} + \left( {n + 1} \right){.2^n}\) với mọi \(n ≥ 1\)

LG a

Chứng minh rằng (un) là một dãy số tăng.

Lời giải chi tiết:

Từ hệ thức xác định dãy số (un), ta có:

\({u_{n + 1}} - {u_n} = \left( {n + 1} \right){.2^n} > 0\;\forall n \ge 1.\)

Do đó (un) là một dãy số tăng.

LG b

Chứng minh rằng

\({u_n} = 1 + \left( {n - 1} \right){.2^n}\) với mọi \(n ≥ 1\).

Lời giải chi tiết:

Ta sẽ chứng minh \({u_n} = 1 + \left( {n - 1} \right){.2^n}\)  (1) với mọi \(n ≥ 1\), bằng phương pháp qui nạp.

+) Với \(n = 1\), ta có \({u_1} = 1 = 1 + \left( {1 - 1} \right){.2^1}.\) Như vậy (1) đúng khi \(n = 1\)

+) Giả sử (1) đúng khi \(n = k, k \in\mathbb N^*\), tức là:

\({u_k} = 1 + \left( {k - 1} \right){2^k}\)

+) Ta sẽ chứng minh (1) cũng đúng với \(n = k + 1\).

Thật vậy, từ hệ thức xác định dãy số (un) và giả thiết qui nạp, ta có :

\({u_{k + 1}} = {u_k} + \left( {k + 1} \right){.2^k} \)

\(= 1 + \left( {k - 1} \right){.2^k} + \left( {k + 1} \right){.2^k} \)

\( = 1 + k{.2^k} - {2^k} + k{.2^k} + {2^k} \)

\(= 1 + 2k{.2^k}= 1 + k{.2^{k + 1}}\)

Vậy (1) đúng với mọi \(n ≥ 1\).

 Loigiaihay.com


Bình chọn:
3 trên 5 phiếu

Các bài liên quan: - Bài 2. Dãy số

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài