Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 2. Dãy số
Câu 13 trang 106 SGK Đại số và Giải tích 11 Nâng cao>
Hãy xét tính tăng
Hãy xét tính tăng, giảm của các dãy số sau:
LG a
Dãy số (un) với \({u_n} = {n^3} - 3{n^2} + 5n - 7\)
Phương pháp giải:
Xét hiệu un+1 – un và so sánh với 0.
Lời giải chi tiết:
Ta có:
\(\eqalign{
& {u_{n + 1}} - {u_n} \cr&= {\left( {n + 1} \right)^3} - 3{\left( {n + 1} \right)^2} + 5\left( {n + 1} \right) - 7\cr& - \left( {{n^3} - 3{n^2} + 5n - 7} \right) \cr
& = {n^3} + 3{n^2} + 3n + 1 \cr&- 3\left( {{n^2} + 2n + 1} \right) + 5n + 5 - 7\cr& - {n^3} + 3{n^2} - 5n + 7\cr&= 3{n^2} - 3n + 3 \cr& = 3n\left( {n - 1} \right) + 3> 0,\forall n \in \mathbb N^* \cr} \)
\( \Rightarrow {u_{n + 1}} > {u_n} \Rightarrow \left( {{u_n}} \right)\) là dãy số tăng.
LG b
Dãy số (xn) với \({x_n} = {{n + 1} \over {{3^n}}}\)
Phương pháp giải:
Xét tỉ số \({{{x_n}} \over {{x_{n + 1}}}}\) và so sánh với 1.
Lời giải chi tiết:
Ta có:
\(\eqalign{
& {{{x_n}} \over {{x_{n + 1}}}} = {{n + 1} \over {{3^n}}}.{{{3^{n + 1}}} \over {n + 2}} \cr&= {{3\left( {n + 1} \right)} \over {n + 2}} = {{3n + 3} \over {n + 2}} > 1\;\forall n \in \mathbb N^*\cr&\text{vì } \,3n + 3 > n + 2\;\forall n \in \mathbb N^* \cr
& \Rightarrow {x_n} > {x_{n + 1}} \cr} \)
\(⇒ (x_n)\) là dãy số giảm.
LG c
Dãy số (an) với \({a_n} = \sqrt {n + 1} - \sqrt n \)
Phương pháp giải:
Viết lại công thức xác định an dưới dạng
\({a_n} = {1 \over {\sqrt {n + 1} + \sqrt n }}\) (sử dụng nhân chia liên hợp)
Tiếp theo, xét tỉ số \({{{a_n}} \over {{a_{n + 1}}}}\) và so sánh với 1.
Lời giải chi tiết:
Ta có:
\(\eqalign{
& {a_n} = \sqrt {n + 1} - \sqrt n \cr& = \frac{{\left( {\sqrt {n + 1} - \sqrt n } \right)\left( {\sqrt {n + 1} + \sqrt n } \right)}}{{\sqrt {n + 1} + \sqrt n }} \cr&= \frac{{n + 1 - n}}{{\sqrt {n + 1} + \sqrt n }}\cr&= {1 \over {\sqrt {n + 1} + \sqrt n }} \cr
& {{{a_n}} \over {{a_{n + 1}}}} \cr&=\frac{1}{{\sqrt {n + 1} + \sqrt n }}:\frac{1}{{\sqrt {n + 2} + \sqrt {n + 1} }}\cr&= {{\sqrt {n + 2} + \sqrt {n + 1} } \over {\sqrt {n + 1} + \sqrt n }} > 1 \cr
& \Rightarrow {a_n} > {a_{n + 1}} \cr} \)
⇒ \((a_n)\) là dãy số giảm.
Loigiaihay.com




