Bài 9 trang 52 SGK Hình học 10 nâng cao>
Cho tam giác ABC với ba đường trung tuyến AD, BE, CF. Chứng minh rằng
Đề bài
Cho tam giác \(ABC\) với ba đường trung tuyến \(AD, BE, CF\). Chứng minh rằng
\(\overrightarrow {BC} .\overrightarrow {AD} + \overrightarrow {CA} .\overrightarrow {BE} + \overrightarrow {AB} .\overrightarrow {CF} = 0\).
Phương pháp giải - Xem chi tiết
Dựa vào quy tắc trung điểm - vecto, thay các vecto AD, BE, CF bởi tổng 2 vecto khác chung gốc.
Lời giải chi tiết
Vì D là trung điểm của BC nên \(\overrightarrow {AD} = {1 \over 2}(\overrightarrow {AB} + \overrightarrow {AC} )\)
Tương tự vì E, F là trung điểm của AC, AB nên:
\(\eqalign{
& \overrightarrow {BE} = {1 \over 2}(\overrightarrow {BA} + \overrightarrow {BC} ) \cr
& \overrightarrow {CF} = {1 \over 2}(\overrightarrow {CA} + \overrightarrow {CB} ) \cr} \)
Do đó \(\overrightarrow {BC} .\overrightarrow {AD} + \overrightarrow {CA} .\overrightarrow {BE} + \overrightarrow {AB} .\overrightarrow {CF} \)
\(\eqalign{
& = {1 \over 2}\overrightarrow {BC} (\overrightarrow {AB} + \overrightarrow {AC} ) + {1 \over 2}\overrightarrow {CA} (\overrightarrow {BA} + \overrightarrow {BC} ) \cr&+ {1 \over 2}\overrightarrow {AB} (\overrightarrow {CA} + \overrightarrow {CB} ) \cr
& = {1 \over 2}(\overrightarrow {BC} \overrightarrow {AB} + \overrightarrow {BC} \overrightarrow {AC} + \overrightarrow {CA} \overrightarrow {BA} \cr&+ \overrightarrow {CA} \overrightarrow {BC} + \overrightarrow {AB} \overrightarrow {CA} + \overrightarrow {AB} \overrightarrow {CB} )\cr
& = {1 \over 2}(\overrightarrow {BC} \overrightarrow {AB} + \overrightarrow {AB} \overrightarrow {CB} ) \cr&+ {1 \over 2}(\overrightarrow {BC} \overrightarrow {AC} + \overrightarrow {CA} \overrightarrow {BC} ) \cr&+ {1 \over 2}(\overrightarrow {CA} \overrightarrow {BA} + \overrightarrow {AB} \overrightarrow {CA} )\cr} \)
\(\begin{array}{l}
= \frac{1}{2}\overrightarrow {AB} \left( {\overrightarrow {BC} + \overrightarrow {CB} } \right)\\
+ \frac{1}{2}\overrightarrow {BC} \left( {\overrightarrow {AC} + \overrightarrow {CA} } \right)\\
+ \frac{1}{2}\overrightarrow {CA} \left( {\overrightarrow {BA} + \overrightarrow {AB} } \right)\\
= \frac{1}{2}\overrightarrow {AB} .\overrightarrow {BB} + \frac{1}{2}\overrightarrow {BC} .\overrightarrow {AA} + \frac{1}{2}\overrightarrow {CA} .\overrightarrow {BB} \\
= 0 + 0 + 0\\
= 0
\end{array}\)
(điều phải chứng minh)
Loigiaihay.com
- Bài 10 trang 52 SGK Hình học 10 nâng cao
- Bài 11 trang 52 SGK Hình học 10 nâng cao
- Bài 12 trang 52 SGK Hình học 10 nâng cao
- Bài 13 trang 52 SGK Hình học 10 nâng cao
- Bài 14 trang 52 SGK Hình học 10 nâng cao
>> Xem thêm