Bài 9 trang 191 SGK Đại số 10 Nâng cao


Tìm góc lượng giác (Ou, Ov) có số đo dương lớn nhất, biết một góc lượng giác (Ou, Ov) có số đo:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Tìm góc lượng giác (Ou, Ov) có số đo dương nhỏ nhất, biết một góc lượng giác (Ou, Ov) có số đo:

LG a

a) -900

Phương pháp giải:

Giải bpt \({0^0} < {a^0} + k{360^0} \le {360^0}\) tìm k, từ đó suy ra góc cần tìm.

Lời giải chi tiết:

Với a = -900 thì:

\({0^0} <  - {90^0} + k{360^0} \le {360^0}\) \( \Leftrightarrow {90^0} < k{360^0} \le {450^0} \) \( \Leftrightarrow \frac{1}{4} < k \le \frac{5}{4} \Rightarrow k = 1\)

Số dương nhỏ nhất cần tìm là 270.

LG b

 10000

Lời giải chi tiết:

Với a = 1000o thì

\(\begin{array}{l}
{0^0} < {1000^0} + k{360^0} \le {360^0}\\
\Leftrightarrow - {1000^0} < k{360^0} \le - {640^0}\\
\Leftrightarrow - \frac{{25}}{9} < k \le - \frac{{16}}{9}\\
\Rightarrow k = - 2
\end{array}\)

Số dương nhỏ nhất cần tìm là 280

LG c

\({{30\pi } \over 7}\)

Phương pháp giải:

Giải bpt \(0 < \alpha  + k2\pi  \le 2\pi \) tìm k suy ra góc cần tìm.

Lời giải chi tiết:

 Với α = \({{30\pi } \over 7}\) thì

\(\begin{array}{l}
0 < \frac{{30\pi }}{7} + k2\pi \le 2\pi \\
\Leftrightarrow - \frac{{30\pi }}{7} < k2\pi \le - \frac{{16\pi }}{7}\\
\Leftrightarrow - \frac{{15}}{7} < k < - \frac{8}{7}\\
\Rightarrow k = - 2
\end{array}\)

Số dương nhỏ nhất cần tìm là: \({{2\pi } \over 7}\)

Lg d

\( - {{15\pi } \over {11}}\)

Lời giải chi tiết:

 Với α = \( - {{15\pi } \over {11}}\) thì 

\(\begin{array}{l}
0 < - \frac{{15\pi }}{{11}} + k2\pi \le 2\pi \\
\Leftrightarrow \frac{{15\pi }}{{11}} < k2\pi \le \frac{{37\pi }}{{11}}\\
\Leftrightarrow \frac{{15}}{{22}} < k < \frac{{37}}{{22}}\\
\Rightarrow k = 1
\end{array}\)

Số dương nhỏ nhất cần tìm là: \({{7\pi } \over {11}}\)

Loigiaihay.com


Bình chọn:
3.7 trên 15 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!