Bài 11 trang 191 SGK Đại số 10 Nâng cao


Đề bài

Chứng minh rằng hai tia Ou và Ov vuông góc với nhau khi và chỉ khi góc lượng giác (Ou; Ov) có số đo là \((2k + 1){\pi  \over 2};\,\,\,k \in Z\)

Lời giải chi tiết

Ta có:

\(\eqalign{
& Ou \bot Ov \Leftrightarrow \left[ \matrix{
sđ(Ou,Ov) = {\pi \over 2} + k2\pi \,\,(k \in\mathbb Z) \hfill \cr 
sđ(Ou,Ov) = - {\pi \over 2} + l2\pi (l \in\mathbb Z) \hfill \cr 
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\pi \over 2} + (2l - 1)\pi \hfill \cr} \right. \cr 
& \Leftrightarrow sđ(Ou,Ov) = {\pi \over 2} + m\pi = {\pi \over 2}(1 + 2m)\,\,(m \in\mathbb Z) \cr} \)

Loigiaihay.com


Bình chọn:
4.1 trên 10 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.