Giải SBT toán hình học và đại số 10 nâng cao
Bài tập Ôn tập chương II - Tích vô hướng của hai vectơ ..
Bài 89 trang 52 SBT Hình học 10 Nâng cao>
Giải bài tập Bài 89 trang 52 SBT Hình học 10 Nâng cao
Đề bài
Cho điểm \(M\) nằm trong đường tròn \((O)\) ngoại tiếp tam giác \(ABC\). Kẻ các đường thẳng \(MA, MB, MC,\) chúng cắt lại đường tròn đó lần lượt ở \(A’, B’, C’\). Chứng minh rằng:
\(\dfrac{{{S_{A'B'C'}}}}{{{S_{ABC}}}} = \dfrac{{{{({R^2} - M{O^2})}^3}}}{{{{(MA.MB.MC)}^2}}}\).
Lời giải chi tiết
(h.76).

\(\begin{array}{l}{S_{A'B'C'}} = \dfrac{{A'B'.B'C'.C'A'}}{{4R}}.\\{S_{ABC}} = \dfrac{{AB.BC.CA}}{{4R}}.\end{array}\)
Suy ra \(\dfrac{{{S_{A'B'C'}}}}{{{S_{ABC}}}} = \dfrac{{A'B'.B'C'.C'A'}}{{AB.BC.CA}}\) (*)
Ta lại có
\(\Delta MAB \sim \Delta MB'A'\) nên \(\dfrac{{A'B'}}{{AB}} = \dfrac{{MA'}}{{MB}} = \dfrac{{MA.MA'}}{{MA.MB}}\).
Do \(MA.MA' = |{\wp _{M/(O)}}| = {R^2} - M{O^2}\) nên \(\dfrac{{A'B'}}{{AB}} = \dfrac{{{R^2} - M{O^2}}}{{MA.MB}}\).
Tương tự
\(\dfrac{{B'C'}}{{BC}} = \dfrac{{{R^2} - M{O^2}}}{{MB.MC}} ;\) \( \dfrac{{C'A'}}{{CA}} = \dfrac{{{R^2} - M{O^2}}}{{MC.MA}}\) (**)
Thay (**) vào (*) ta được điều phải chứng minh.
Loigiaihay.com




