Bài 86 trang 51 SBT Hình học 10 Nâng cao


Giải bài tập Bài 86 trang 51 SBT Hình học 10 Nâng cao

Đề bài

Cho tam giác \(ABC\) có \(\widehat A = {60^0} ,  a = 10 ,  r = \dfrac{{5\sqrt 3 }}{3}\).

a) Tính \(R.\)

b) Tính \(b, c.\)

Lời giải chi tiết

 

a) Ta có

\(2R = \dfrac{a}{{\sin A}} = \dfrac{{10}}{{\dfrac{{\sqrt 3 }}{2}}} = \dfrac{{20\sqrt 3 }}{3} \)

\( \Rightarrow  R = \dfrac{{10\sqrt 3 }}{3}\).

b) Gọi \(M, N, P\) lần lượt là các tiếp điểm của \(BC, CA, AB\) với đường tròn nội tiếp tam giác \(ABC\) (h.72).

Ta có \(AP = AN = r.\cot {30^0} = 5 ; \)

\(BP + NC = BM + MC = a = 10\).

Từ đó ta có \((b - AN) + (c - AP) = 10\)  hay  \(b+c=20.\)    (1)

Theo định lí cosin

\({a^2} = {b^2} + {c^2} - 2bc\cos {60^0}\) hay \({a^2} = {(b + c)^2} - 2bc - bc\), suy ra

\(bc = \dfrac{{{{(b + c)}^2} - {a^2}}}{3}\) \( = \dfrac{{{{20}^2} - {{10}^2}}}{3} = 100\)            (2)

Từ (1) và (2) suy ra \(b, c\) là nghiệm của phương trình bậc hai \({x^2} - 20x + 100 = 0\).

Phương trình này có nghiệm kép \(b=c=10\) nên \(ABC\) là tam giác đều.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài