Bài 87 trang 51 SBT Hình học 10 Nâng cao


Giải bài tập Bài 87 trang 51 SBT Hình học 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Biết rằng tam giác \(ABC\) có \(AB=10, AC=4\) và \(\widehat A = {60^0}\).

LG a

Tính chu vi của tam giác.

Lời giải chi tiết:

Ta đi tìm độ dài cạnh \(BC\).

Áp dụng định lí cosin, ta có

\(B{C^2} = {10^2} + {4^2} - 2.4.10.\cos {60^0} = 76\)

Suy ra \(BC \approx 8,72\).

Chu vi tam giác \(2p \approx 10 + 4 + 8,72 \approx 22,72\).

LG b

Tính \(\tan C.\)

Lời giải chi tiết:

(h.73).

Kẻ đường cao \(BH\) ta có \(AH = AB. \cos {60^0} = 5\), suy ra \(HC=5-4=1.\)

\(BH = AB.\sin {60^0} = 5\sqrt 3 ,\) \(  \tan C =  - \tan \widehat {BCH} =  - \dfrac{{HB}}{{HC}}\)\( =  - 5\sqrt 3 \).

LG c

Lấy điểm \(D\) trên tia đối của tia \(AB\) sao cho \(AD=6\) và điểm \(E\) trên tia \(AC\) sao cho \(AE=x\). Tìm \(x\) để \(BE\) là tiếp tuyến của đường tròn \((ADE)\) (\((ADE)\) là đường tròn ngoại tiếp tam giác \(ADE\)).

Lời giải chi tiết:

(h.74).

 

Để \(BE\) là tiếp tuyến của đường tròn \((ADE)\) phải có \(B{E^2} = BA.BD = 10(10 + 6) = 160\).

Ta có \(AE = x\), áp dụng định lí cosin cho tam giác \(ABE\) :

\(B{E^2} = {x^2} + 100 - 10x\).

Từ đó có phương trình: \({x^2} - 10x + 100 - 160\) hay \({x^2} - 10 - 60 = 0\), phương trình này có một nghiệm dương là \(x = 5 + \sqrt {85} \). Vậy điểm \(E\) cần tìm là điểm trên tia \(AC\) và cách \(A\) một khoảng bằng \(5 + \sqrt {85} \).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài