Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 8. Hệ phương trình mũ và lôgarit
Bài 75 trang 127 SGK giải tích 12 nâng cao>
Giải các phương trình
LG a
\(\eqalign{
{\log _3}\left( {{3^x} - 1} \right).{\log _3}\left( {{3^{x + 1}} - 3} \right) = 12; \cr} \)
Lời giải chi tiết:
Điều kiện:
\(\begin{array}{l}
\left\{ \begin{array}{l}
{3^x} - 1 > 0\\
{3^{x + 1}} - 3 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{3^x} - 1 > 0\\
{3.3^x} - 3 > 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
{3^x} - 1 > 0\\
3\left( {{3^x} - 1} \right) > 0
\end{array} \right. \Leftrightarrow {3^x} - 1 > 0\\
\Leftrightarrow {3^x} > 1 \Leftrightarrow x > 0
\end{array}\)
Ta có: \(lo{g_3}\left( {{3^x} - 1} \right).lo{g_3}\left( {{3^{x + 1}} - 3} \right) = 12\)
\(\eqalign{
& \Leftrightarrow lo{g_3}\left( {{3^x} - 1} \right).lo{g_3}[3\left( {{3^x} - 1} \right)] = 12 \cr
& \Leftrightarrow lo{g_3}\left( {{3^x} - 1} \right)\left[ {1 + lo{g_3}\left( {{3^x} - 1} \right)} \right] = 12 \cr} \)
\( \Leftrightarrow \log _3^2\left( {{3^x} - 1} \right) + lo{g_3}\left( {{3^x} - 1} \right) - 12 = 0\)
\(\eqalign{
& \Leftrightarrow \left[ \matrix{
lo{g_3}\left( {{3^x} - 1} \right) = - 4 \hfill \cr
lo{g_3}\left( {{3^x} - 1} \right) = 3 \hfill \cr} \right. \cr&\Leftrightarrow \left[ \matrix{
{3^x} - 1 = 3^{-4}={1 \over {81}} \hfill \cr
{3^x} - 1 = {3^3} = 27 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
{3^x} = {{82} \over {81}} \hfill \cr
{3^x} = 28 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\log _3}{{82} \over {81}} \hfill \cr
x = {\log _3}28 \hfill \cr} \right. \cr} \)
Vậy \(S = \left\{ {{{\log }_3}28;{\log _3}{{82} \over {81}} } \right\}\)
LG b
\(\eqalign{
{\log _{x - 1}}4 = 1 + {\log _2}\left( {x - 1} \right); \cr} \)
Lời giải chi tiết:
Điều kiện: \(0 < x - 1 \ne 1 \Leftrightarrow 1 < x \ne 2\)
Ta có: \({\log _{x - 1}}4 = {1 \over {{{\log }_4}\left( {x - 1} \right)}} \)
\( = \frac{1}{{{{\log }_{{2^2}}}\left( {x - 1} \right)}} = \frac{1}{{\frac{1}{2}{{\log }_2}\left( {x - 1} \right)}}\)
\(= {2 \over {{{\log }_2}\left( {x - 1} \right)}}\).
Đặt \(t = {\log _2}\left( {x - 1} \right)\)
Ta có phương trình:
\(\eqalign{
& {2 \over t} = 1 + t \Leftrightarrow {t^2} + t - 2 = 0 \cr
& \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = - 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{\log _2}\left( {x - 1} \right) = 1 \hfill \cr
{\log _2}\left( {x - 1} \right) = - 2 \hfill \cr} \right.\cr& \Leftrightarrow \left[ \begin{array}{l}x - 1 = 2\\x - 1 = {2^{ - 2}} = \frac{1}{4}\end{array} \right. \cr&\Leftrightarrow \left[ \matrix{x = 3 \hfill \cr x = {5 \over 4} \hfill \cr} \right. (TM)\cr} \)
Vậy \(S = \left\{ {3;{5 \over 4}} \right\}\)
LG c
\(\eqalign{
5\sqrt {{{\log }_2}\left( { - x} \right)} = {\log _2}\sqrt {{x^2}} ; \cr} \)
Lời giải chi tiết:
Điều kiện:
\(\left\{ \begin{array}{l}
- x > 0\\
{\log _2}\left( { - x} \right) \ge 0\\
\sqrt {{x^2}} > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
x < 0\\
- x \ge {2^0} = 1\\
x \ne 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
x < 0\\
x \le - 1
\end{array} \right. \Leftrightarrow x \le - 1\)
\(5\sqrt {{{\log }_2}\left( { - x} \right)} = {\log _2}\sqrt {{x^2}} \)
\( \Leftrightarrow 5\sqrt {{{\log }_2}\left( { - x} \right)} = {\log _2}\left| x \right|\)
\(\Leftrightarrow 5\sqrt {{{\log }_2}\left( { - x} \right)} = {\log _2}\left( { - x} \right)\) (vì \(x \le - 1 \Rightarrow \left| x \right| = - x\))
Đặt \(t = {\log _2}\left( { - x} \right) \ge 0\) ta được:
\(\eqalign{
& 5\sqrt t = t \Leftrightarrow 25t = {t^2} \cr &\Leftrightarrow \left[ \matrix{
t = 0 \hfill \cr
t = 25 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
{\log _2}\left( { - x} \right) = 0 \hfill \cr
lo{g_2}\left( { - x} \right) = 25 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = - 1 \hfill \cr
x = - {2^{25}} \hfill \cr} \right. \cr} \)
Vậy \(S = \left\{ { - 1; - {2^{25}}} \right\}\)
LG d
\(\eqalign{
{3^{{{\log }_4} x+ {1 \over 2}}} + \,{3^{{{\log }_4} x- {1 \over 2}}} = \sqrt x . \cr} \)
Lời giải chi tiết:
Điều kiện: \(x > 0\)
Ta có: \(\sqrt x = \sqrt {{4^{{{\log }_4}x}}} = {2^{{{\log }_4}x}}\)
Do đó \({3^{{1 \over 2} + {{\log }_4}x}} + {3^{{{\log }_4}x - {1 \over 2}}} = \sqrt x \)
\(\Leftrightarrow {3^{\frac{1}{2}}}{.3^{{{\log }_4}x}} + {3^{{{\log }_4}x}}{.3^{ - \frac{1}{2}}} = {2^{{{\log }_4}x}}\)
\(\Leftrightarrow \left( {\sqrt 3 + {1 \over {\sqrt 3 }}} \right){3^{{{\log }_4}x}} = {2^{{{\log }_4}x}}\)
\(\eqalign{
& \Leftrightarrow {4 \over {\sqrt 3 }} = {\left( {{2 \over 3}} \right)^{{{\log }_4}x}} \cr&\Leftrightarrow {\log _4}x = {\log _{{2 \over 3}}}{4 \over {\sqrt 3 }} \cr
& \Leftrightarrow x = {4^{{{\log }_{{2 \over 3}}}{4 \over {\sqrt 3 }}}} \cr} \)
Vậy \(S = \left\{ {{4^{{{\log }_{{2 \over 3}}}{4 \over {\sqrt 3 }}}}} \right\}\)
Loigiaihay.com





Danh sách bình luận