Bài 6 trang 76 SGK Đại số và Giải tích 12 Nâng cao


So sánh các số

Lựa chọn câu để xem lời giải nhanh hơn

So sánh các số

LG a

\(\sqrt 2 \) và \(\root 3 \of 3 \)

Phương pháp giải:

Lũy thừa bậc 6 hai số và so sánh.

Lời giải chi tiết:

Ta có \({\left( {\sqrt 2 } \right)^6} = {2^3} = 8\); \({\left( {\root 3 \of 3 } \right)^6} = {3^2} = 9\)

Do 8 < 9 nên ta có \({\left( {\sqrt 2 } \right)^6}\) < \({\left( {\root 3 \of 3 } \right)^6}\), suy ra \(\sqrt 2 \) < \(\root 3 \of 3 \).

Cách khác:

Giả sử √2 < 3 <=> (√2)2 < 3

<=> 2 √2 < 3 <=> 8 < 9 đúng.

Vậy √2 < 3

LG b

\(\sqrt 3  + \root 3 \of {30} \) và \(\root 3 \of {63} \)

Phương pháp giải:

So sánh bắc cầu với 4.

Lời giải chi tiết:

\(\sqrt 3  + \root 3 \of {30}  > 1 + \root 3 \of {27}  = 4 \)

\( \root 3 \of {63} < \root 3 \of {64} =4  \)

Do đó \(\sqrt 3  + \root 3 \of {30} \) > 4 > \(\root 3 \of {63} \).

Vậy \(\sqrt 3  + \root 3 \of {30} \) > \(\root 3 \of {63} \).

Cách khác:

Giả sử √3+30 < 63

<=> 3√3 + 930 + 3√3(302) + 30 < 63

<=> 3 √3 + 93 + 3√3(302) < 33 (*)

Ta có 3√3 > 3

930 > 927=27

3√3(302) > 3 (27.27) = 27

=> 3√3 + 930 + 3√3(302) > 3 + 27 + 27 > 33

Vậy (*) sai => √3+30 > 63

LG c

\(\root 3 \of 7  + \sqrt {15} \) và \(\sqrt {10}  + \root 3 \of {28} \)

Phương pháp giải:

So sánh bắc cầu với 6.

Lời giải chi tiết:

\(\root 3 \of 7  + \sqrt {15}  <\sqrt[3]{8} + \sqrt {16} = 2 + 4 =6\)

\(\sqrt {10}  + \sqrt[3]{{28}} > \sqrt 9  + \sqrt[3]{{27}} = 3 + 3 = 6\)

Do đó \(\root 3 \of 7  + \sqrt {15} \) < 6 < \(\sqrt {10}  + \root 3 \of {28} \)

Vậy \(\root 3 \of 7  + \sqrt {15} \) < \(\sqrt {10}  + \root 3 \of {28} \)

Cách khác:

Loigiaihay.com


Bình chọn:
3.8 trên 9 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài