Bài 6 trang 31 SGK Hình học 12 Nâng cao

Bình chọn:
3.7 trên 3 phiếu

Cho khối chóp S.ABC cố đường cao S/4 bằng a, đáy là tam giác vuông cân có AB = BC = a. Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác SAC. a) Tính thể tích khối chóp S.ABC. b) Chứng minh rằng sc vuông góc với mp(AB'C'). c) Tính thể tích khối chóp S.AB’C’.

Bài 6. Cho khối chóp \(S.ABC\) có đường cao \(SA\) bằng \(a\), đáy là tam giác vuông cân có \(AB = BC = a\). Gọi \(B'\) là trung điểm của \(SB, C'\) là chân đường cao hạ từ \(A\) của tam giác \(SAC\).

a) Tính thể tích khối chóp \(S.ABC\).

b) Chứng minh rằng \(SC\) vuông góc với mp \((AB'C')\).

c) Tính thể tích khối chóp \(S.AB’C’\).

Giải

 

a) Thể tích khối chóp \(S.ABC\) là: \({V_{S.ABC}} = {1 \over 3}{S_{ABC}}.SA = {1 \over 6}{a^2}.a = {{{a^3}} \over 6}\)

b) Ta có \(BC \bot BA\) và \(BC \bot SA\) nên do đó \(AB' \bot BC\)

Ta có \(AB' \bot SB\) và \(AB' \bot BC\) nên \(AB' \bot SC\) (do \(AB' \bot \left( {SBC} \right)\) )

Theo giả thiết \(SC \bot AC'\), \(SC \bot AB'\) (chứng minh trên) \( \Rightarrow SC \bot \left( {AB'C'} \right)\)

c) Ta có \(AC’\) là đường cao trong tam giác vuông \(SAC\) nên \({{SC'} \over {SC}} = {{SC'.SC} \over {S{C^2}}} = {{S{A^2}} \over {S{C^2}}} = {{{a^2}} \over {3{a^2}}} = {1 \over 3}\)

Từ đó suy ra \({{{V_{S.AB'C'}}} \over {{V_{S.ABC}}}} = {{SA} \over {SA}}.{{SB'} \over {SB}}.{{SC'} \over {SC}} = {1 \over 2}.{1 \over 3} = {1 \over 6}\)

Vì \({V_{S.ABC}} = {{{a^3}} \over 6}\) nên \({V_{S.AB'C'}} = {{{a^3}} \over {36}}\)

loigiaihay.com

Các bài liên quan: - Ôn tập chương I - Khối đa diện và thể tích của chúng

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu