Bài 53 trang 216 SGK Đại số 10 Nâng cao>
Hãy tính sin(α + β ) theo a và b
Đề bài
Biết cosα +cosβ =a; sinα+sinβ =b (a,b là hằng số và a2 + b2 ≠ 0)
Hãy tính sin(α + β ) theo a và b.
Lời giải chi tiết
Ta có:
\(\left. \matrix{
a = 2\cos {{\alpha + \beta } \over 2}\cos {{\alpha - \beta } \over 2} \hfill \cr
b = 2\sin {{\alpha + \beta } \over 2}\cos {{\alpha - \beta } \over 2} \hfill \cr} \right\} \)
\(\begin{array}{l}
\Rightarrow ab = 2\cos \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2}.2\sin \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2}\\
= \left( {2\cos \frac{{\alpha + \beta }}{2}\sin \frac{{\alpha + \beta }}{2}} \right).2{\cos ^2}\frac{{\alpha - \beta }}{2}\\
= 2\sin \left( {\alpha + \beta } \right){\cos ^2}\frac{{\alpha - \beta }}{2}\\
{a^2} + {b^2}\\
= 4{\cos ^2}\frac{{\alpha + \beta }}{2}{\cos ^2}\frac{{\alpha - \beta }}{2}\\
+ 4{\sin ^2}\frac{{\alpha + \beta }}{2}{\cos ^2}\frac{{\alpha - \beta }}{2}\\
= 4{\cos ^2}\frac{{\alpha - \beta }}{2}\left( {{{\cos }^2}\frac{{\alpha + \beta }}{2} + {{\sin }^2}\frac{{\alpha + \beta }}{2}} \right)\\
= 4{\cos ^2}\frac{{\alpha - \beta }}{2}\\
\Rightarrow {\cos ^2}\frac{{\alpha - \beta }}{2} = \frac{{{a^2} + {b^2}}}{4}\\
\Rightarrow ab = 2\sin \left( {\alpha + \beta } \right){\cos ^2}\frac{{\alpha - \beta }}{2}\\
= 2\sin \left( {\alpha + \beta } \right).\frac{{{a^2} + {b^2}}}{4}\\
= \sin \left( {\alpha + \beta } \right).\frac{{{a^2} + {b^2}}}{2}\\
\Rightarrow \sin \left( {\alpha + \beta } \right) = \frac{{2ab}}{{{a^2} + {b^2}}}
\end{array}\)
Cách khác:
Loigiaihay.com
- Bài 54 trang 216 SGK Đại số 10 Nâng cao
- Bài 52 trang 216 SGK Đại số 10 Nâng cao
- Bài 51 trang 216 SGK Đại số 10 Nâng cao
- Bài 50 trang 215 SGK Đại số 10 Nâng cao
- Bài 49 trang 215 SGK Đại số 10 Nâng cao
>> Xem thêm