Bài 46 trang 215 SGK Đại số 10 Nâng cao

Bình chọn:
4.1 trên 7 phiếu

Chứng minh rằng:

Chứng minh rằng:

a) \(sin3α = 3sinα – 4si{n^3}\alpha \) ; \( cos3α =4co{s^3}\alpha – 3cosα\)

b)

\(\eqalign{
& \sin \alpha \sin ({\pi \over 3} - \alpha )\sin ({\pi \over 3} + \alpha ) = {1 \over 4}\sin 3\alpha \cr
& \cos \alpha \cos ({\pi \over 3} - \alpha )cos({\pi \over 3} + \alpha ) = {1 \over 4}\cos 3\alpha \cr} \)

Ứng dụng: Tính: sin 200 sin 400 sin 800 và tan 200 tan 400 tan 800

Đáp án

a) Ta có:

\(sin3α = sin (2α  + α) = sin 2α  cosα + sinα cos 2α\)

\( = {\rm{ }}2{\rm{ }}sin\alpha {\rm{ }}co{s^2}\alpha {\rm{ }} + {\rm{ }}sin\alpha {\rm{ }}(1{\rm{ }}-{\rm{ }}2si{n^2}\alpha )\)

\(= {\rm{ }}2sin\alpha {\rm{ }}(1{\rm{ }}-{\rm{ }}si{n^2}\alpha ){\rm{ }} + {\rm{ }}sin(1{\rm{ }}-{\rm{ }}si{n^2}\alpha ){\rm{ }}\)

\(= {\rm{ }}3sin\alpha {\rm{ }}-{\rm{ }}4si{n^3}\alpha \)

\(cos3α = cos (2α  + α) = cos 2α  cosα  - sin2α sinα\)

\(= {\rm{ }}(2co{s^2}\alpha {\rm{ }}-{\rm{ }}1)cos\alpha {\rm{ }}-{\rm{ }}2si{n^2}\alpha {\rm{ }}cos\alpha \)

\( = {\rm{ }}2co{s^3}\alpha {\rm{ }}-{\rm{ }}cos\alpha {\rm{ }}-{\rm{ }}2cos\alpha {\rm{ }}(1{\rm{ }}-{\rm{ }}co{s^2}\alpha ){\rm{ }} \)

\(= {\rm{ }}4co{s^3}\alpha {\rm{ }}-{\rm{ }}3cos\alpha \)

b) Ta có:

\(\eqalign{
& \sin \alpha \sin ({\pi \over 3} - \alpha )\sin ({\pi \over 3} + \alpha ) \cr&= sin\alpha .{1 \over 2}(cos2\alpha - \cos {{2\pi } \over 3}) \cr
& = {1 \over 2}\sin \alpha (1 - 2{\sin ^2}\alpha + {1 \over 2}) = {1 \over 4}\sin \alpha (3 - 4{\sin ^2}\alpha ) \cr
& = {1 \over 4}\sin 3\alpha \cr
& \cos \alpha \cos ({\pi \over 3} - \alpha )cos({\pi \over 3} + \alpha ) \cr&= \cos \alpha .{1 \over 2}(cos\alpha + \cos {{2\pi } \over 3}) \cr
& = {1 \over 2}\cos \alpha (2{\cos ^2}\alpha - 1 - {1 \over 2}) \cr&= {1 \over 4}\cos \alpha (4{\cos ^2}\alpha - 3) = {1 \over 4}\cos 3\alpha \cr} \)

Ứng dụng:

\(\eqalign{
& \sin {20^0}\sin {40^0}\sin {80^0} \cr&= \sin {20^0}\sin ({60^0} - {20^0})\sin ({60^0} + {20^0}) \cr
& = {1 \over 4}\sin ({3.20^0}) = {1 \over 4}\sin {60^0} = {{\sqrt 3 } \over 8} \cr
& \cos {20^0}\cos {40^0}\cos {80^0} = {1 \over 4}\cos ({3.20^0}) = {1 \over 8} \cr} \) 

Vậy : \(\tan {20^0}\tan {40^0}\tan {80^0} = \sqrt 3 \)

Loigiaihay.com

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng