Bài 48 trang 215 SGK Đại số 10 Nâng cao

Bình chọn:
3.8 trên 9 phiếu

Chứng minh rằng:

Đề bài

Chứng minh rằng: \(\cos {{2\pi } \over 7} + \cos {{4\pi } \over 7} + \cos {{6\pi } \over 7} =  - {1 \over 2}\)

Hướng dẫn: Nhân vế trái với \({\pi  \over 7}\) (hoặc \({{2\pi } \over 7}\) ) rồi sử dụng công thức biến đổi tích thành tổng.

Lời giải chi tiết

Đặt \(A = \cos {{2\pi } \over 7} + \cos {{4\pi } \over 7} + \cos {{6\pi } \over 7}\) , ta có:

\(\eqalign{
& 2A\sin {\pi \over 7} = 2\cos {{2\pi } \over 7}\sin {\pi \over 7} + 2\cos {{4\pi } \over 7}\sin {\pi \over 7}\cr& + 2\cos {{6\pi } \over 7}\sin {\pi \over 7} \cr 
& = (\sin {{3\pi } \over 7} - \sin {\pi \over 7}) + (\sin {{5\pi } \over 7} - \sin {{3\pi } \over 7})\cr&+ (\sin {{7\pi } \over 7} - \sin {{5\pi } \over 7}) = - sin{\pi \over 7} \cr 
& \Rightarrow A = - {1 \over 2} \cr} \)

Loigiaihay.com

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng