Bài 41 trang 44 SGK giải tích 12 nâng cao


a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: b) Tùy theo các giá trị của m, hãy biện luận số nghiệm của phương trình:

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y =  - {x^3} + 3{x^2} - 1\).

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = - \infty ;\,\mathop {\lim }\limits_{x \to - \infty } y = + \infty \cr 
& y' = - 3{x^2} + 6x = - 3x\left( {x - 2} \right);\cr&y' = 0 \Leftrightarrow \left[ \matrix{
x = 0;\,y\left( 0 \right) = - 1 \hfill \cr 
x = 2;\,y\left( 2 \right) = 3 \hfill \cr} \right. \cr} \)

Bảng biến thiên:

Hàm đồng biến trên khoảng \((0;2)\), nghịch biến trên mỗi khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\).

Hàm số đạt cực tiểu tại điểm \(x = 0\), giá trị cực tiểu \(y(0) = -1\). Hàm số đạt cực đại tại điểm \(x = 2\), giá trị cực đại \(y(2) = 3\).

Đồ thị: \(y'' =  - 6x + 6\)

\(y'' = 0 \Leftrightarrow x = 1;\,y\left( 1 \right) = 1\)

Xét dấu y”:

\(I(1;1)\) là điểm uốn của đồ thị

Điểm đặc biệt:

\(x = 0 \Rightarrow y =  - 1\)

\(x =  - 1 \Rightarrow y = 3\)

LG b

Tùy theo các giá trị của \(m\), hãy biện luận số nghiệm của phương trình: \( - {x^3} + 3{x^2} - 1 = m\)

Lời giải chi tiết:

Số nghiệm của phương trình chính là số giao điểm của đồ thị \((C)\) hàm số \(y =  - {x^3} + 3{x^2} - 1\) với đường thẳng \(y = m\) cùng phương với trục \(Ox\).

Dựa vào đồ thị ở câu a) ta có:

- Nếu m > 3: Phương trình (*) có 1 nghiệm

- Nếu m = 3: Phương trình (*) có 2 nghiệm.

- Nếu -1 < m < 3 : Phương trình (*) có 3 nghiệm

- Nếu m = -1: Phương trình (*) có 2 nghiệm.

- Nếu m < -1 phương trình (*) có 1 nghiệm.

Vậy,

- Nếu \(m < -1\) hoặc \(m > 3\) thì phương trình có \(1\) nghiệm;

- Nếu \(m = -1\) hoặc \(m = 3\) thì phương trình có \(2\) nghiệm;

- Nếu \(-1 < m < 3\) thì phương trình có \(3\) nghiệm.

Loigiaihay.com


Bình chọn:
4.2 trên 6 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài