Bài 4 trang 70 SGK Hình học 10 nâng cao

Bình chọn:
3.5 trên 6 phiếu

Trên hình 63 có vẽ hai tam giác vuông cân ABC và A'B'C' có chung đỉnh A.

Trên hình 63 có vẽ hai tam giác vuông cân ABC và A'B'C' có chung đỉnh A. Gọi I và J lần lượt là trung điểm của hai đoạn thẳng BB' và CC'. Chứng minh rằng

a) \(AI \bot C{C'}\,,\,AJ \bot B{B'}\,\);

b) \(B{C'}\,\, \bot {B'}C\,\,\).

Giải

 

Ta có \(\overrightarrow {AI}  = {1 \over 2}(\overrightarrow {AB}  + \overrightarrow {A{B'}} )\,\,;\,\,\overrightarrow {AJ}  = {1 \over 2}(\overrightarrow {AC}  + \overrightarrow {A{C'}} )\)

\(\eqalign{
& \Rightarrow \,\,\overrightarrow {AI} .\,\overrightarrow {C{C'}} = {1 \over 2}(\overrightarrow {AB} + \overrightarrow {A{B'}} ).\,(\overrightarrow {A{C'}} - \overrightarrow {AC} ) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {1 \over 2}(\overrightarrow {AB} .\,\overrightarrow {A{C'}} - \overrightarrow {AB} .\overrightarrow {AC} + \overrightarrow {A{B'}} .\,\overrightarrow {A{C'}} - \overrightarrow {A{B'}} .\,\overrightarrow {AC} ) \cr} \)

Vì \(AB \bot AC\,,\,\,A{B'} \bot A{C'}\,\) nên \(\overrightarrow {AB} .\,\overrightarrow {AC}  = \overrightarrow {A{B'}} .\,\overrightarrow {A{C'}}  = 0\)

Mặt khác

\(\eqalign{
& \overrightarrow {AB} .\,\overrightarrow {A{C'}} = AB.\,A{C'}.\cos \widehat {BA{C'}} \cr
& \overrightarrow {A{B'}} .\,\overrightarrow {AC} = A{B'}.\,AC.\cos \widehat {{B'}AC} \cr
& \Rightarrow \,\,\,\overrightarrow {AB} .\,\overrightarrow {A{C'}} = \overrightarrow {A{B'}} .\,\overrightarrow {AC} \,\, \Rightarrow \,\,\overrightarrow {AI} .\,\overrightarrow {C{C'}} = 0\,\, \Rightarrow \,\,AI \bot C{C'} \cr} \)

Tương tự \(\overrightarrow {AJ} .\,\overrightarrow {B{B'}}  = {1 \over 2}(\overrightarrow {AC}  + \overrightarrow {A{C'}} ).\,(\overrightarrow {A{B'}}  - \overrightarrow {AB} )\)

\(\eqalign{
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {1 \over 2}(\overrightarrow {AC} .\,\overrightarrow {A{B'}} - \overrightarrow {AC} .\overrightarrow {AB} + \overrightarrow {A{C'}} .\,\overrightarrow {A{B'}} - \overrightarrow {A{C'}} .\,\overrightarrow {AB} ) =0\cr
& \Rightarrow \,\,AJ \bot B{B'} \cr} \)

b) Ta có

\(\eqalign{
& \overrightarrow {B{C'}} .\,\overrightarrow {{B'}C} = (\overrightarrow {A{C'}} - \overrightarrow {AB} ).\,(\overrightarrow {AC} - \overrightarrow {A{B'}} ) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \overrightarrow {A{C'}} .\,\overrightarrow {AC} - \overrightarrow {A{C'}} .\,\overrightarrow {A{B'}} - \overrightarrow {AB} .\,\overrightarrow {AC} + \overrightarrow {AB} .\,\overrightarrow {A{B'}} \cr} \)

 \(\overrightarrow {AB} .\,\overrightarrow {A{B'}}  = AB.A{B'}.\cos \widehat {BA{B'}}\)

\(\overrightarrow {AC} .\,\overrightarrow {A{C'}}  = AC.A{C'}.\cos ({180^0} - \widehat {BA{B'}}) \)

                    \(=  - \overrightarrow {AB} .\,\overrightarrow {A{B'}}.\)

Do đó: \(\overrightarrow {B{C'}} .\,\overrightarrow {{B'}C} =\overrightarrow 0\)

Vậy \(B{C'} \bot {B'}C\).

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan