Bài 10 trang 71 SGK Hình học 10 nâng cao


Cho tam giác ABC. Chứng minh rằng

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác ABC. Chứng minh rằng

LG a

\(\cot A = {{{b^2} + {c^2} - {a^2}} \over {4S}}\) ( S là diện tích tam giác ABC)

Lời giải chi tiết:

Ta có

\(\eqalign{
& \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}}\,\,;\cr&S = {1 \over 2}bc\sin A \Rightarrow bc\sin A = 2S\cr 
& \Rightarrow \,\,\cot A = {{\cos A} \over {\sin A}} = {{{b^2} + {c^2} - {a^2}} \over {2bc\sin A}} \cr& = \frac{{{b^2} + {c^2} - {a^2}}}{{2.2S}}= {{{b^2} + {c^2} - {a^2}} \over {4S}} \cr} \)

Quảng cáo
decumar

LG b

\(\cot A + \cot B + \cot C = {{{a^2} + {b^2} + {c^2}} \over {4S}}\)

Lời giải chi tiết:

Tương tự câu a), ta có

\(\eqalign{
& \cot B = {{{a^2} + {c^2} - {b^2}} \over {4S}}\cr&\cot C = {{{a^2} + {b^2} - {c^2}} \over {4S}} \cr 
& \Rightarrow \,\,\cot A + \cot B + \cot C\cr& = {{{b^2} + {c^2} - {a^2}} \over {4S}} + {{{a^2} + {c^2} - {b^2}} \over {4S}} + {{{a^2} + {b^2} - {c^2}} \over {4S}} \cr 
&   = \frac{{{b^2} + {c^2} - {a^2} + {a^2} + {c^2} - {b^2} + {a^2} + {b^2} - {c^2}}}{{4S}}\cr&= \,{{{a^2} + {b^2} + {c^2}} \over {4S}} \cr} \)

Loigiaihay.com


Bình chọn:
3.4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

2k8 Tham gia ngay group chia sẻ, trao đổi tài liệu học tập miễn phí

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.