Bài 38 Trang 175 SGK Đại số và Giải tích 12 Nâng cao>
Cho hình phẳng A giới hạn bởi các đường y = cosx, y = 0, x = 0 và Tính thể tích của khối tròn xoay tạo thành khi quay hình A quanh trục hoành.
Đề bài
Cho hình phẳng A giới hạn bởi các đường \(y = \cos x, y = 0, x = 0\) và \(x = {\pi \over 4}.\)
Tính thể tích của khối tròn xoay tạo thành khi quay hình A quanh trục hoành.
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(V = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \)
Lời giải chi tiết
Ta có:
\(\eqalign{
& V = \pi \int\limits_0^{{\pi \over 4}} {{{\cos }^2}xdx = {\pi \over 2}\int\limits_0^{{\pi \over 4}} {(1 + \cos 2x)dx} } \cr
& = {\pi \over 2}\left. {\left( {x + {1 \over 2}\sin 2x} \right)} \right|_0^{{\pi \over 4}} \cr &= {\pi \over 2}\left( {{\pi \over 4} + {1 \over 2}} \right) \cr &= {{\pi (\pi + 2)} \over 8} \cr} \)
Loigiaihay.com
- Bài 39 Trang 175 SGK Đại số và Giải tích 12 Nâng cao
- Bài 40 Trang 175 SGK Đại số và Giải tích 12 Nâng cao
- Bài 37 Trang 175 SGK Đại số và Giải tích 12 Nâng cao
- Bài 36 Trang 175 SGK Đại số và Giải tích 12 Nâng cao
- Bài 35 Trang 175 SGK Đại số và Giải tích 12 Nâng cao
>> Xem thêm