Bài 36 Trang 175 SGK Đại số và Giải tích 12 Nâng cao


Tính thể tích của vật thể T nằm giữa hai mặt phẳng x = 0 và , biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x là một hình vuông cạnh là .

Đề bài

Tính thể tích của vật thể \(T\) nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) \((0 \le x \le \pi )\) là một hình vuông cạnh là \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \).

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(V = \int\limits_a^b {S\left( x \right)dx} \)

Lời giải chi tiết

Diện tích thiết diện hình vuông:

\(\eqalign{
& S(x) = {(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} )^2} = 4\sin x \cr 
& V = \int\limits_0^\pi {S(x)dx} = \int\limits_0^\pi {4\sin xdx }\cr &= - 4\cos x\mathop |\nolimits_0^\pi = 8 \cr} \)

 Loigiaihay.com


Bình chọn:
3.5 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài