Bài 30 Trang 172 SGK Đại số và Giải tích 12 Nâng cao


Đề bài

Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\;(0 \le x \le \pi )\) là một tam giác đều cạnh  \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \).

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(V = \int\limits_a^b {{S}\left( x \right)dx} \).

Diện tích tam giác đều cạnh a là \(S = \dfrac{1}{2}a.a.\sin {60^0} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

Lời giải chi tiết

Ta có: 

\(S\left( x \right) = \dfrac{1}{2}.2\sqrt {\sin x} .2\sqrt {\sin x} .\sin {60^0}\) \( = \sqrt 3 \sin x\)

Do đó: \(V = \int\limits_0^\pi  {S(x)dx = \int\limits_0^\pi  {\sqrt 3 } } \sin {\rm{x}}dx\) \( =  - \sqrt 3 \cos x\mathop |\nolimits_0^\pi   = 2\sqrt 3 \)

Loigiaihay.com


Bình chọn:
2.8 trên 5 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài