Bài 37 trang 207 SGK Đại số 10 Nâng cao


Trong hệ tọa độ vuông góc Oxy gắn với một đường tròn lượng giác, cho điểm P có tọa độ (2, -3)

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Trong hệ tọa độ vuông góc Oxy gắn với một đường tròn lượng giác, cho điểm P có tọa độ (2, -3)

LG a

Chứng minh rằng điểm M sao cho \(\overrightarrow {OM}  = {{\overrightarrow {OP} } \over {|\overrightarrow {OP} |}}\) là giao điểm của tia OP với đường tròn lượng giác đó

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
\overrightarrow {OM} \uparrow \uparrow \overrightarrow {OP} \hfill \cr 
|\overrightarrow {OM} | = |{{\overrightarrow {OP} } \over {\overrightarrow {OP} }}| = {{|\overrightarrow {OP} |} \over {|\overrightarrow {OP} |}}=1 \hfill \cr} \right. \) 

Vậy M là giao của tia OP với đường tròn lượng giác.

Cách khác:

LG b

Tính tọa độ điểm M và từ đó suy ra cosin, sin của góc lượng giác (Ox, OP)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& |\overrightarrow {OP} |\, = \sqrt {{2^2} + {{( - 3)}^2}} = \sqrt {13} \cr 
& \Rightarrow \overrightarrow {OM} ({2 \over {\sqrt {13} }};\, - {3 \over {\sqrt {13} }}) \cr} \)

Vậy 

\(\left\{ \matrix{
\cos (Ox,OP) = {2 \over {\sqrt {13} }} \hfill \cr 
sin(Ox,OP) = {{ - 3} \over {\sqrt {13} }} \hfill \cr} \right.\)

Loigiaihay.com


Bình chọn:
3.4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!