Bài 25 trang 205 SGK Đại số 10 Nâng cao


Tìm các mối liên hệ giữa các giá trị lượng giác của các góc cung sau:

Đề bài

Tìm các mối liên hệ giữa các giá trị lượng giác của các góc cung α và \(\alpha  - {{3\pi } \over 2}\)

Phương pháp giải - Xem chi tiết

Sử dụng giá trị lượng giác các góc có mối liên quan đặc biệt.

Lời giải chi tiết

\(\eqalign{& \cos (\alpha - {{3\pi } \over 2}) = \cos ({{3\pi } \over 2} - \alpha ) \cr&= \cos (\pi + {\pi \over 2} - \alpha ) = - \cos ({\pi \over 2} - \alpha ) \cr &= - \sin \alpha \cr & \sin (\alpha - {{3\pi } \over 2}) = - \sin ({{3\pi } \over 2} - \alpha ) \cr&= - \sin (\pi + {\pi \over 2} - \alpha ) = \sin ({\pi \over 2} - \alpha ) \cr &= \cos \alpha \cr & \tan(\alpha - {{3\pi } \over 2})  = \frac{{\sin \left( {\alpha  - \frac{{3\pi }}{2}} \right)}}{{\cos \left( {\alpha  - \frac{{3\pi }}{2}} \right)}} \cr &= \frac{{\cos \alpha }}{{ - \sin \alpha }}\cr &= - \cot \alpha \,\,\,(\alpha \ne k\pi ;\,\,\,k \in Z) \cr & \cot (\alpha - {{3\pi } \over 2})  = \frac{{\cos \left( {\alpha  - \frac{{3\pi }}{2}} \right)}}{{\sin \left( {\alpha  - \frac{{3\pi }}{2}} \right)}} \cr &= \frac{{ - \sin \alpha }}{{\cos \alpha }}\cr &= - \tan \alpha \,\,(\alpha \ne {\pi \over 2} + k\pi ;\,\,\,k \in Z) \cr} \)

Loigiaihay.com


Bình chọn:
3.2 trên 11 phiếu

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài