Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Bài 30 Trang 172 SGK Đại số và Giải tích 12 Nâng cao>
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0 và , biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là một hình vuông cạnh .
Đề bài
Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\;(0 \le x \le \pi )\) là một tam giác đều cạnh \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \).
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(V = \int\limits_a^b {{S}\left( x \right)dx} \).
Diện tích tam giác đều cạnh a là \(S = \dfrac{1}{2}a.a.\sin {60^0} = \dfrac{{{a^2}\sqrt 3 }}{4}\)
Lời giải chi tiết
Ta có:
\(S\left( x \right) = \dfrac{1}{2}.2\sqrt {\sin x} .2\sqrt {\sin x} .\sin {60^0}\) \( = \sqrt 3 \sin x\)
Do đó: \(V = \int\limits_0^\pi {S(x)dx = \int\limits_0^\pi {\sqrt 3 } } \sin {\rm{x}}dx\) \( = - \sqrt 3 \cos x\mathop |\nolimits_0^\pi = 2\sqrt 3 \)
Loigiaihay.com




