 Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                         Ôn tập chương II - Tích vô hướng của hai vectơ và ứng d..
                                                        Ôn tập chương II - Tích vô hướng của hai vectơ và ứng d..
                                                    Bài 3 trang 70 SGK Hình học 10 nâng cao>
Cho hình bình hành ABCD. Tìm tập hợp các điểm M sao cho
Đề bài
Cho hình bình hành \(ABCD\). Tìm tập hợp các điểm \(M\) sao cho
\(M{A^2} + M{B^2} + M{C^2} + M{D^2} = {k^2}\), trong đó \(k\) là một số cho trước.
Lời giải chi tiết
Gọi \(O\) là tâm hình bình hành \(ABCD\), ta có O là trung điểm AC và BD.
Do đó
\(\begin{array}{l}
\overrightarrow {OA} + \overrightarrow {OC} = \overrightarrow 0 \\
\overrightarrow {OB} + \overrightarrow {OD} = \overrightarrow 0 \\
 \Rightarrow \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 
\end{array}\)
Ta có:
\(\eqalign{
& M{A^2} + M{B^2} + M{C^2} + M{D^2}\cr& = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2} + {\overrightarrow {MD} ^2} \cr 
& = {(\overrightarrow {OA} - \overrightarrow {OM} )^2} + {(\overrightarrow {OB} - \overrightarrow {OM} )^2} \cr& + {(\overrightarrow {OC} - \overrightarrow {OM} )^2} + {(\overrightarrow {OD} - \overrightarrow {OM} )^2} \cr 
& = {\overrightarrow {OA} ^2} - 2\overrightarrow {OA} .\overrightarrow {OM}  + {\overrightarrow {OM} ^2} \cr&+ {\overrightarrow {OB} ^2} - 2\overrightarrow {OB} .\overrightarrow {OM}  + {\overrightarrow {OM} ^2} \cr&+ {\overrightarrow {OC} ^2} - 2\overrightarrow {OC} .\overrightarrow {OM}  + {\overrightarrow {OM} ^2} \cr& + {\overrightarrow {OD} ^2} - 2\overrightarrow {OD} .\overrightarrow {OM}  + {\overrightarrow {OM} ^2}\cr& = O{A^2} + O{B^2} + O{C^2} + O{D^2} + 4O{M^2}\cr&  - 2\overrightarrow {OM} (\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} ) \cr 
& = O{A^2} + O{B^2} + O{C^2} + O{D^2} + 4O{M^2}\cr& = 2(O{A^2} + O{B^2}) + 4O{M^2} \cr} \)
(vì OA=OC, OB=OD)
Do đó \(M{A^2} + M{B^2} + M{C^2} + M{D^2} = {k^2}\)
\(\Leftrightarrow 4O{M^2} = {k^2} - 2(O{A^2} + O{B^2})\)
\( \Leftrightarrow O{M^2} = \frac{{{k^2} - 2\left( {O{A^2} + O{B^2}} \right)}}{4}\)
+) Nếu \({k^2} > 2(O{A^2} + O{B^2})\) thì tập hợp các điểm \(M\) là đường tròn tâm \(O\) bán kính \(\sqrt {{1 \over 4}\left[ {{k^2} - 2(O{A^2} + O{B^2})} \right]} \).
+) Nếu \({k^2} = 2(O{A^2} + O{B^2})\) thì tập hợp các điểm \(M\) chỉ gồm một phần tử là \(O\).
+) Nếu \({k^2} < 2(O{A^2} + O{B^2})\) thì tập hợp điểm \(M\) là tập rỗng.
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            