Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 6. Ứng dụng tích phân để tính thể tích vật thể
Bài 29 Trang 172 SGK Đại số và Giải tích 12 Nâng cao>
Tính thể tích của vật thể nằm giữa hai mặt phẳng x = -1 và x = 1, biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là một hình vuông cạnh là
Đề bài
Tính thể tích của vật thể nằm giữa hai mặt phẳng \(x = -1\) và \(x = 1\), biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x( - 1 \le x \le 1)\) là một hình vuông cạnh là \(2\sqrt {1 - {x^2}} \).
Phương pháp giải - Xem chi tiết
Sử dụng công thức \(V = \int\limits_a^b {{S}\left( x \right)dx} \)
Lời giải chi tiết
Hình vuông cạnh \(2\sqrt {1 - {x^2}} \) có diện tích \(S(x) = {(2\sqrt {1 - {x^2}} )^2} = 4(1 - {x^2})\)
Ta có: \(V = \int\limits_{ - 1}^1 {4(1 - {x^2})dx = } \left. {\left( {4x - {{4{x^3}} \over 3}} \right)} \right|_{ - 1}^1 \) \(= {{16} \over 3}.\)
Loigiaihay.com




