Bài 19 trang 82 SGK Đại số và Giải tích 12 Nâng cao


Đơn giản biểu thức

Lựa chọn câu để xem lời giải nhanh hơn

Đơn giản biểu thức

LG a

\({a^{ - 2\sqrt 2 }}{\left( {{1 \over {{a^{ - \sqrt 2  - 1}}}}} \right)^{\sqrt 2  + 1}}\); 

Lời giải chi tiết:

\({a^{ - 2\sqrt 2 }}{\left( {{1 \over {{a^{ - \sqrt 2  - 1}}}}} \right)^{\sqrt 2  + 1}} \)

\( = {a^{ - 2\sqrt 2 }}.{\left[ {{{\left( {{a^{ - \sqrt 2  - 1}}} \right)}^{ - 1}}} \right]^{\sqrt 2  + 1}}\)

\(= {a^{ - 2\sqrt 2 }}{\left( {{a^{\sqrt 2  + 1}}} \right)^{\sqrt 2  + 1}} \)

\( = {a^{ - 2\sqrt 2 }}.{a^{\left( {\sqrt 2  + 1} \right)\left( {\sqrt 2  + 1} \right)}}\)

\(= {a^{ - 2\sqrt 2 }}{a^{3 + 2\sqrt 2 }}  = {a^{ - 2\sqrt 2  + 3 + 2\sqrt 2 }}\)

\(= {a^3}\)

LG b

\({\left( {{{{a^{\sqrt 3 }}} \over {{b^{\sqrt 3  - 1}}}}} \right)^{\sqrt 3  + 1}}{{{a^{ - 1 - \sqrt 3 }}} \over {{b^{ - 2}}}};\)

Lời giải chi tiết:

\({\left( {{{{a^{\sqrt 3 }}} \over {{b^{\sqrt 3  - 1}}}}} \right)^{\sqrt 3  + 1}}{{{a^{ - 1 - \sqrt 3 }}} \over {{b^{ - 2}}}} \)

\( = \frac{{{{\left( {{a^{\sqrt 3 }}} \right)}^{\sqrt 3  + 1}}}}{{{{\left( {{b^{\sqrt 3  - 1}}} \right)}^{\sqrt 3  + 1}}}}.\frac{{{a^{ - 1 - \sqrt 3 }}}}{{{b^{ - 2}}}} \)

\(= \frac{{{a^{\sqrt 3 .\left( {\sqrt 3  + 1} \right)}}}}{{{b^{\left( {\sqrt 3  - 1} \right)\left( {\sqrt 3  + 1} \right)}}}}.\frac{{{a^{ - 1 - \sqrt 3 }}}}{{{b^{ - 2}}}}\)

\(= {{{a^{3 + \sqrt 3 }}} \over {{b^2}}}.{{{a^{ - 1 - \sqrt 3 }}} \over {{b^{ - 2}}}} \)

\(= \frac{{{a^{3 + \sqrt 3 }}.{a^{ - 1 - \sqrt 3 }}}}{{{b^2}.{b^{ - 2}}}} = \frac{{{a^{3 + \sqrt 3  - 1 - \sqrt 3 }}}}{{{b^{2 - 2}}}} = \frac{{{a^2}}}{{{b^0}}}= {a^2}\)

LG c

\({{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1;\) 

Lời giải chi tiết:

\({{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1 = {{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }} + {{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}}\)

\( = \frac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }} + {a^{2\sqrt 2 }} - 2{a^{\sqrt 2 }}.{b^{\sqrt 3 }} + {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}}\)

\( = {{2{a^{2\sqrt 2 }} - 2{a^{\sqrt 2 }}{b^{\sqrt 3 }}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} \)

\(= {{2{a^{\sqrt 2 }}\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}}\)

\(= {{2{a^{\sqrt 2 }}} \over {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\)

LG d

\(\sqrt {{{\left( {{x^\pi } + {y^\pi }} \right)}^2} - {{\left( {{4^{{1 \over \pi }}}xy} \right)}^\pi }} ;\)

Lời giải chi tiết:

\(\sqrt {{{\left( {{x^\pi } + {y^\pi }} \right)}^2} - {{\left( {{4^{{1 \over \pi }}}xy} \right)}^\pi }} \)

\(\begin{array}{l}
= \sqrt {{{\left( {{x^\pi }} \right)}^2} + 2{x^\pi }{y^\pi } + {{\left( {{y^\pi }} \right)}^2} - {{\left( {{4^{\frac{1}{\pi }}}} \right)}^\pi }{x^\pi }{y^\pi }} \\
= \sqrt {{x^{2\pi }} + 2{x^\pi }{y^\pi } + {y^{2\pi }} - 4{x^\pi }{y^\pi }}
\end{array}\)

\(= \sqrt {{x^{2\pi }} + {y^{2\pi }} - 2{x^\pi }{y^\pi }}  \)

\(= \sqrt {{{\left( {{x^\pi } - {y^\pi }} \right)}^2}}  \)

\(= \left| {{x^\pi } - {y^\pi }} \right|\).

Loigiaihay.com


Bình chọn:
3.6 trên 5 phiếu

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài