Bài 17 trang 102 SBT Hình học 10 Nâng cao


Giải bài tập Bài 17 trang 102 SBT Hình học 10 Nâng cao

Đề bài

Cho hai đường thẳng \({d_1}:\,\left\{ \matrix{  x = {x_1} + at \hfill \cr  y = {y_1} + bt \hfill \cr}  \right.\) và \({d_2}:\,\left\{ \matrix{  x = {x_2} + ct'. \hfill \cr  y = {y_2} + dt'. \hfill \cr}  \right.\)

(\(x_1, x_2, y_1, y_2\) là các hằng số).

Tìm điều kiện của \(a, b, c, d\) để hai đường thẳng \(d_1\) và \(d_2\) :

a) Cắt nhau;

b) Song song;   

c) Trùng nhau;

d) Vuông góc với nhau.

Lời giải chi tiết

\(d_1\) đi qua \(M_1(x_1 ; y_1)\) và có vec tơ chỉ phương \(\overrightarrow u (a;b)\), \(d_2\) có vec tơ chỉ phương \(\overrightarrow v (c;d)\).

a) \(d_1\) cắt \(d_2\) \( \Leftrightarrow \overrightarrow u \) và \(\overrightarrow v \) không cùng phương \( \Leftrightarrow \,\,ad - bc \ne 0\).

b) \(d_1//d_2\) \( \Leftrightarrow \overrightarrow u ,\overrightarrow v \) cùng phương  và \({M_1}({x_1};{y_1}) \notin {d_2}\)

\( \Leftrightarrow ad - bc = 0\) và \(d({x_1} - {x_2}) \ne c({y_1} - {y_2})\).

c) \({d_1} \equiv {d_2}\Leftrightarrow \,\,\overrightarrow u ,\,\overrightarrow v \) cùng phương và \({M_1}({x_1}\,;\,{y_1}) \in {d_2}\)

\( \Leftrightarrow \,\,ad - bc = 0\) và \(d({x_1} - {x_2}) = c({y_1} - {y_2})\).

d) \({d_1} \bot {d_2}\Leftrightarrow \,\,\overrightarrow u  \bot \overrightarrow v  \Leftrightarrow ac + bd = 0\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí