Bài 14 Trang 153 SGK Đại số và Giải tích 12 Nâng cao


a) Một vật chuyển động với vận tốc . Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm đến thời điểm . b) Một vật chuyển động chậm dần với vận tốc . Tính quãng đường mà vật di chuyển được từ thời điểm đến thời điểm mà vật dừng lại.

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Một vật chuyển động với vận tốc \(v\left( t \right) = 1 - 2\sin 2t\,\,\left( {m/s} \right)\). Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm \(t = 0\) (s) đến thời điểm \(t = {{3\pi } \over 4}\,\left( s \right)\).

Lời giải chi tiết:

Quãng đường vật di chuyển trong thời gian từ \(t=0\) (s) đến \(t = {{3\pi } \over 4}\left( s \right)\) là: \(S = \int\limits_0^{{{3\pi } \over 4}} {\left( {1 - 2\sin 2t} \right)dt}  \) \(= \left( {t + \cos 2t} \right)\mathop |\nolimits_0^{{{3\pi } \over 4}}  = {{3\pi } \over 4} - 1\left( m \right)\)

LG b

Một vật chuyển động chậm dần với vận tốc \(v\left( t \right) = 160 - 10t\,\left( {m/s} \right)\). Tính quãng đường mà vật di chuyển được từ thời điểm t=0 đến thời điểm mà vật dừng lại. 

Lời giải chi tiết:

Gọi \({t_0}\) là thời điểm vật dừng lại, khi đó:

\(v\left( {{t_0}} \right) = 0 \Leftrightarrow 160 - 10{t_0} = 0 \) \(\Leftrightarrow {t_0} = 16.\)

Quãng đường vật di chuyển từ \(t=0\) đến \(t=16\) là

\(S = \int\limits_0^{16} {\left( {160 - 10t} \right)dt} \) \(= \left( {160t - 5{t^2}} \right)\mathop |\nolimits_0^6  = 1280.\)

  Loigiaihay.com


Bình chọn:
3.6 trên 5 phiếu

Các bài liên quan: - Bài 3. Tích phân

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài